§ 4. Электрон в трехмерной решетке

Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Результаты оказываются очень похожими. Пусть имеется прямоугольная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что амплитуда прыжка к соседу в направлении х есть iAx/?; амплитуда прыжка в направлении у есть iAy/?, а амплитуда прыжка в направлении z есть iAz/?. Как же описать базисные состояния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами х, у, z, где (х, у, z) — одна из точек решетки. Если выбрать начало координат в одном из атомов, то все эти точки придутся на

где nх, ny, nz — три целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у точек решетки. Итак, базисное состояние изображается символом |электрон в х, у, z>, а амплитуда того, что электрон в некотором состоянии |?> окажется в этом базисном состоянии, есть

С (х, у, z)=<электрон в х, у, z|?>.

Как и прежде, амплитуды С (х, у, z) могут меняться во времени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:

(11.22)

Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.

Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента

(11.23)

Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, ky и kz следующим образом:

(11.24)

Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k. И действительно, (11.23) можно переписать в векторных обозначениях:

(11.25)

Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волновым числом k=(kx2+ky2+kz2)1/2.

Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относительных знаков и величин Ах, Ау и Аz. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой.

Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к

(11.26)

В простой кубической решетке с расстоянием а между узлами следует ожидать, что и Ах, и Аy, и Аг будут все равны друг другу (скажем, равны А), так что получилось бы

(11.27)

или

А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некоторой эффективной массой.

В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состояние электрона около атома несимметрично) три коэффициента Ах, Аy и Az различны. Тогда «эффективная масса» электрона, сосредоточенного в узкой области, зависит от направления его движения. Может, например, оказаться, что у него разная инерция при движении в направлении х и при движении в направлении у. (Детали такого положения вещей иногда описываются с помощью «тензора эффективной массы».)