§ 6. Проекционная матрица для спина 1[44]

Теперь мы хотели бы применить наши знания об атоме водорода к одной специальной задаче. В гл. 3 мы говорили о том, что частица со спином 1, находящаяся в одном из базисных состояний (+, 0, -) по отношению к прибору Штерна—Герлаха с какой-то частной ориентацией (скажем, по отношению к прибору S), будет иметь определенную амплитуду пребывания в одном из трех состояний по отношению к прибору Т, ориентированному в пространстве по-другому. Имеются девять таких амплитуд <jT|iS>, которые вместе образуют проекционную матрицу. В гл. 3, § 7, мы без доказательства выписали элементы этой матрицы для различных ориентации Т по отношению к S. Теперь мы хотим показать вам один из способов их вывода.

В атоме водорода мы с вами отыскали систему со спином 1, составленную из двух частиц со спином 1/2. В гл. 4 мы уже научились преобразовывать амплитуды для спина 1/2. Эти знания можно применить к тому, чтобы получить преобразование для спина 1. Вот как это делается: имеется система (атом водорода с энергией +А) со спином 1. Пусть мы пропустили ее сквозь фильтр S Штерна—Герлаха так, что знаем теперь, что она находится в одном из базисных состояний по отношению к S, скажем в |+S>. Какова амплитуда того, что она окажется в одном из базисных состояний, скажем |+T>, по отношению к прибору Т? Если вы назовете систему координат прибора S системой х, у, z, то состояние |+S> — это то, что недавно называлось состоянием |++>. Но представьте, что какой-то ваш приятель провел свою ось z вдоль оси Т. Он свои состояния будет относить к некоторой системе х', у', z'. Его состояния «вверх» и «вниз» для электрона и протона отличались бы от ваших. Его состояние «плюс — плюс», которое можно записать |+'+'>, отмечая «штрихованность» системы, есть состояние |+Т> частицы со спином 1. А вас интересует <+T|+S>, что есть просто иной способ записи амплитуды <+'+'|++>.

Амплитуду <+'+'|++> можно найти следующим образом. В вашей системе спин электрона из состояния |++> направлен вверх. Это означает, что у него есть некоторая амплитуда <+'|+>e оказаться в системе вашего приятеля спином вверх и некоторая амплитуда <-'|+>е оказаться в этой системе спином вниз. Равным образом, протон в состоянии |++> имеет спин вверх в вашей системе и амплитуды <+'|+>р и <-'|+>p оказаться спином вверх или вниз в «штрихованной» системе. Поскольку мы говорим о двух разных частицах, то амплитуда того, что обе частицы вместе в его системе окажутся спинами вверх, равна произведению амплитуд

(10.44)

Мы поставили значки е и р под амплитудами <+'|+>, чтоб было ясно, что мы делаем. Но обе они — это просто амплитуды преобразований для частицы со спином 1/2, так что на самом деле — это одни и те же числа. Фактически — это те же амплитуды, которые мы в гл. 4 называли <+Т|+S> и которые мы привели в табл. 4.1 и 4.2.

Но теперь, однако, нам угрожает путаница в обозначениях. Надо уметь различать амплитуду <+T|+S> для частицы со спином 1/2 от того, что мы также назвали <+T|+S>, но для спина 1—между ними нет ничего общего! Надеюсь, вас не очень собьет с толку, если мы на время введем иные обозначения амплитуд для спина 1/2. Они приведены в табл. 10.4. Для состояний частиц спина 1 мы по-прежнему будем прибегать к обозначениям |+S>, |0S> и |-S>.

Таблица 10.4. АМПЛИТУДЫ для СПИНА 1/2

В наших новых обозначениях (10.44) просто превращается в

Это как раз амплитуда <+T|+S> для спина 1. Теперь давайте, например, предположим, что у вашего приятеля система координат, т. е. «штрихованный» прибор Т, повернута вокруг вашей оси z на угол ?; тогда из табл. 4.2 получается

Значит, из (10.44) амплитуда для спина 1 окажется равной

(10.45)

Теперь вам понятно, как мы будем действовать дальше.

Но хорошо бы провести выкладки в общем случае для всех состояний. Если протон и электрон в нашей системе (системе S) оба смотрят вверх, то амплитуды того, что в другой системе (системе Т) они будут в одном из четырех возможных состояний, равны

(10.46)

Затем мы можем записать состояние |++> в виде следующей линейной комбинации:

(10.47)

Но теперь мы замечаем, что |+'+'> — это состояние |+Т>, что {|+ '-'> + |-'+'>} — это как раз ?2, умноженный на состояние |0T> [см. (10.41)], и что |-'-'>=|-Т>. Иными словами, (10.47) переписывается в виде

(10.48)

Точно так же легко показать, что

(10.49)

С |0S> дело обстоит чуть посложнее, потому что

Но каждое из состояний |+-> и |-+> можно выразить через «штрихованные» состояния и подставить в сумму:

(10.50)

и

(10.51)

Умножая сумму (10.50) и (10.51) на 1/?2, получаем

Отсюда следует

(10.52)

Теперь у нас есть все необходимые амплитуды. Коэффициенты в (10.48), (10.49) и (10.52) —это матричные элементы <|iS>. Сведем их в одну матрицу:

(10.53)

Мы выразили преобразование спина 1 через амплитуды а, b, с и d преобразования спина 1/2.

Если, например, система Т повернута по отношению к S на угол ? вокруг оси у (см. фиг. 3.6, стр. 64), то амплитуды в табл. 10.4—это просто матричные элементы Ry(?) в табл. 4.2:

(10.54)

Подставив их в (10.53), получим формулы (3.38), которые приведены на стр. 80 без доказательства.

Но что же случилось с состоянием |IV>?! Это система со спином нуль; значит, у нее есть только одно состояние — оно во всех системах координат одно и то же. Можно проверить, что все так и выходит, если взять разность (10.50) и (10.51); получим

Но (ad-bc) — это определитель матрицы для спина 1/2, он просто равен единице. Получается

при любой относительной ориентации двух систем координат.