ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ

We use cookies. Read the Privacy and Cookie Policy

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ

В разработку теоретических основ авиации огромный вклад внесли Н.Е. Жуковский и С.А. Чаплыгин. Вопросами полета на аппаратах тяжелее воздуха Жуковский заинтересовался еще в конце 80-х годов. В эти годы одной из основных проблем при решении задачи полета на аппаратах тяжелее воздуха являлась проблема подъемной силы. Исследователи ощупью, главным образом на основе эксперимента, стремились в то время решить задачу о подъемной силе крыла. Было получено большое число экспериментальных данных, годных для оценки величины подъемной силы только в частных случаях. Попытки оценить величину подъемной силы на основе теоретических предпосылок, и в частности на основе господствовавшей в то время теории струйного течения, приводили к результатам, значительно отличающимся от опытных.

Жуковский считал необходимым первоначально установить физическую картину появления подъемной силы. В работе «К теории летания» (1890) он высказал мысль, что подъемная сила может явиться результатом некоторого вихревого движения, обусловленного вязкостью жидкости.

В 1890—1891 гг. он поставил интересные опыты с пластинкой, вращающейся в потоке воздуха, которые предвосхитили его идею о присоединенных вихрях, положенную им в основу создания теории подъемной силы.

В эти годы Жуковский изучает целый комплекс вопросов, связанных с решением задачи полета на аппаратах тяжелее воздуха. Уже в то время он обратил внимание на необходимость изучения вопросов устойчивости самолета. В статье «О парении птиц» (1891) он впервые рассмотрел задачу о динамике полета на аппаратах тяжелее воздуха. Жуковский теоретически обосновал возможность осуществления сложных движений самолета в воздухе, в частности «мертвой петли». Впервые «мертвая петля» была выполнена в 1913 г. русским военным летчиком П.Н. Нестеровым (1887—1914). В той же статье Жуковский исследовал также вопрос о центре давления аэродинамических сил и показал, что положение центра давления изменяется с изменением угла атаки.

В 1890—1891 гг. Жуковский ставит эксперименты с целью изучения закона изменения положения центра давления крыла с простейшим профилем — плоской пластинки. Уже тогда он обратил внимание на важность исследования вопросов устойчивости посредством испытаний планеров и змеев.

Жуковский изучает также вопрос о тяге винта. Он рассматривает вопрос о возможности создания летательных аппаратов тяжелее воздуха с машущими крыльями, о целесообразности применения многовинтовых геликоптеров, о прочности гребных винтов («К теории летания» — 1890, «О крылатых пропеллерах» — 1898, «О полезном грузе, поднимаемом геликоптером» —1904). Он определяет условия наиболее экономичного полета самолета и в 1897 г. дает метод вычисления наивыгоднейшего угла атаки («О наивыгоднейшем угле наклона аэроплана»).

Жуковский придавал большое значение постановке опытов в аэродинамических трубах. В его университетской лаборатории в 1902 г., а затем в 1905—1906 гг. были построены аэродинамические трубы. В 1904 г. по идее Жуковского был основан Аэродинамический институт в Кучино, оборудованный новейшими по тому времени приборами.

Наблюдения над полетом моделей самолетов и змеев, многосторонние экспериментальные исследования аэродинамических сил, действующих на простейшее крыло — пластинку, изучение динамики взаимодействия поступательного и вращательного движений тела и, конечно, глубокие изыскания в области классической гидродинамики позволили Жуковскому в 1905 г. дать исчерпывающее решение задачи о подъемной силе. В замечательной работе «О присоединенных вихрях» (1906) он установил, что подъемная сила возникает в результате обтекания потоком неподвижного присоединенного вихря или системы вихрей, которыми можно заменить тело, находящееся в потоке жидкости. Основываясь на этом, Жуковский доказал знаменитую теорему, позволяющую вычислить величину подъемной силы. По формуле Жуковского, величина подъемной силы равняется произведению плотности воздуха, циркуляции скорости потока вокруг обтекаемого тела и скорости движения тела. Правильность теоремы была подтверждена на основе экспериментов с вращающимися в потоке воздуха продолговатыми пластинками, поставленных по идее Жуковского в 1905—1906 гг. в аэродинамической лаборатории Кучинского института.

Однако применить теорему Жуковского к решению задачи о подъемной силе крыла сразу не удалось, так как еще неизвестно было, как определять величину циркуляции скорости по замкнутому контуру, охватывающему тело, входящую в формулу Жуковского.

В 1910 г. Н.Е. Жуковским и С.А. Чаплыгиным была решена задача о силах, действующих на крыло бесконечного размаха.

Введение Жуковским и Чаплыгиным постулата о сходе с задней кромки струй от верхней и нижней поверхностей крыла, так называемого постулата Жуковского — Чаплыгина, позволило полностью решить задачу о подъемной силе крыла, определить момент этой силы, разработать профиль для крыльев самолетов (профили Жуковского—Чаплыгина). Вместе с тем Жуковский впервые исследовал вопрос о профильном сопротивлении крыла и установил, что существует сопротивление, обусловленное сбеганием вихрей с острой передней кромки крыла.

Этим исследованиям крыла бесконечного размаха посвящен ряд работ Жуковского 1910—1911 гг.: «О контурах поддерживающих поверхностей аэропланов», «Геометрические исследования о течении Кутта», «О поддерживающих планах типа Антуанетт», «Определение давления плоскопараллельного потока жидкости на контур, который в пределе переходит в отрезок прямой».

Исследования Н.Е. Жуковского о подъемной силе составляют основу современной аэродинамики, его теорема о подъемной силе имеет фундаментальное значение для теории крыла.

В связи с развитием работ по аэродинамике по инициативе Жуковского создаются новые лаборатории, расширяются старые. В 1910 г. была основана аэродинамическая лаборатория в Московском техническом училище, где появился, в частности, новый тип труб с плоским потоком, широко применяемый ныне; расширена аэродинамическая лаборатория в Московском университете, в которой была построена новая труба, создан прибор для исследования гребных винтов, а также установка для изучения законов истечения газа. Необходимость изучать течение сжимаемой жидкости была ясна Жуковскому еще в начале его деятельности. Уже в работе «Кинематика жидкого тела» (1876) он разбирал одновременно свойства сжимаемой и несжимаемой жидкости.

В 1908 г. Жуковский обратил внимание на то, что коэффициент сопротивления начинает быстро возрастать при приближении скорости потока к скорости звука. На установке для изучения истечения газа по его идее проводились опыты для определения скорости истечения и силы удара вытекающей струи на маленькие тела.

В области аэродинамики больших скоростей Жуковский написал ряд статей: «Аналогия между движением тяжелой жидкости в узком канале и движением газа в трубе с большой скоростью» (1912); «О движении воды в открытом канале и о движении газов в трубах» (1917); «Движение волны со скоростью, большей скорости звука» (1919) и др. В последней работе Жуковский изложил теорию распространения плоской и сферической волн при больших скоростях и показал возможность применения ее к определению сопротивления снарядов.

В аэродинамических лабораториях Московского университета и Московского технического училища в 1910—1911 гг. были поставлены эксперименты с целью проверки результатов теоретических исследований Жуковского об аэродинамических профилях. С той точностью, какую мог дать в то время эксперимент, теория Жуковского была подтверждена. Вместе с этим опыты с профилями Жуковского позволили установить их ценные аэродинамические свойства, указать направление, в котором должны проводиться изыскания при проектировании различных профилей.

Мысль Жуковского о присоединенных вихрях послужила основой для дальнейшего развития теории крыла и создания вихревой теории винта. Возможность перехода от схемы присоединенного вихря крыла бесконечного размаха к вихревой системе крыла конечного размера и лопасти винта была логически обоснована Жуковским с помощью теоретических исследований Гельмгольца о вихрях, а также на основании экспериментальных данных об образовании вихрей за винтом. Идея замены крыла конечного размаха вихревой схемой лежит в основе исследований С.А. Чаплыгина о подъемной силе и сопротивлении крыла конечного размаха (1913).

Жуковский, предполагая, что лопасть винта эквивалентна П-образному вихрю, создал вихревую теорию винта. Эта теория была опубликована в четырех статьях в 1912, 1913, 1915 и 1918 гг. под одним и тем же названием: «Вихревая теория гребного винта». Теория Жуковского позволяет проектировать и строить воздушные винты всех типов: самолетные винты, вентиляторы аэродинамических труб, несущие винты геликоптеров и т. д. На основе этой теории были построены винты Жуковского — «винты НЕЖ», которые имели значительно лучшие характеристики, чем винты, построенные в то время за границей.

Разработка теории винта является одним из вопросов того широкого круга задач в области аэродинамики и авиации, которым занимался Жуковский. В поле зрения Жуковского были все основные вопросы, выдвигавшиеся быстро развивающейся авиацией, а также вопросы, перспективность развития которых он предвидел.

Придавая большое значение исследованию сопротивления среды, Жуковский уже в 1907—1908 гг. поставил ряд опытов по определению сопротивления шара при малых скоростях и установил, что коэффициент сопротивления шара изменяется в зависимости от величины скорости — результат, позднее полученный А. Эйфелем (1832— 1923), Л. Прандтлем (1875—1953) и др. Причины этого изменения Жуковский на основе анализа спектров обтекания шара объяснил изменением характера обтекания шара при увеличении скорости.

Жуковский считал, что причиной сопротивления тел, движущихся в жидкости, являются «убегающие» с поверхности тела вихри. Поэтому, когда в 1911—1913 гг. появилась теория Кармана — Прандтля, в которой определение сопротивления тел основывалось на рассмотрении вихревой картины, образующейся за обтекаемым телом, Жуковский посвятил ей свое сообщение, сделанное в 1913 г. в Отделении физических наук Общества любителей естествознания («Вихревая теория лобового сопротивления, данная проф. Карманом», 1914).

Особое значение придавал Жуковский изучению устойчивости самолета. Читая в Московском техническом училище лекции по теории авиации, Жуковский в 1912 г. касался вопросов статической продольной устойчивости самолета, в 1913 г. офицерам-летчикам прочел специальную лекцию по динамике самолета «Динамика аэропланов в элементарном изложении (статья первая)», а в 1916 г. под тем же названием была опубликована вторая статья Жуковского. В этих лекциях рассматривается продольная и поперечная устойчивость, дается расчет различных фигур: виража, «мертвой петли» и др., изложены также методы аэродинамического расчета.

Жуковский создал первые научно обоснованные и точные методы аэродинамического расчета самолетов. В 1910—1912 гг. он разработал теорию, в которой имелись основные элементы графоаналитических методов аэродинамического расчета самолета по кривым располагаемых и потребных тяг и мощности (теория глиссад). В 1915—1917 гг. Жуковский развил разработанные им методы аэродинамического расчета самолетов и ввел новые диаграммы, впоследствии получившие название сеток Жуковского.

В 1916—1917 гг. Жуковский и его ученики А.Н. Туполев (1888—1972) и А.И. Некрасов (1883—1957) значительно усовершенствовали указанный метод аэродинамического расчета и предложили ряд новых приемов расчета. В 1917 г. была опубликована работа Жуковского «Аэродинамический расчет аэропланов».

Жуковский исследовал также вопросы прочности самолета. В 1918 г. появилась его большая работа «Исследование устойчивости конструкции аэропланов», в которой рассматривалась «задача о прочности конструкции аэропланов в предположении, что лонжероны обременены равномерной нагрузкой, происходящей от силы давления воздуха на крылья аэроплана и от веса крыльев».

Впервые в России Жуковский положил начало теории бомбометания с аэропланов. В 1915 г. в статьях «Бомбометание с аэропланов», в «Лекциях по баллистике» и «Теории бомбометания с аэропланов» (последние две работы впервые опубликованы в Собрании сочинений, 1950) Жуковский разработал метод определения траектории и скорости бомбы, когда сопротивление воздуха пропорционально квадрату скорости, дал способ учета изменения плотности воздуха с высотой. В этих работах рассмотрены различные практические способы бомбометания и прицельные устройства.

СЕРГЕЙ АЛЕКСЕЕВИЧ ЧАПЛЫГИН (1869—1942)

Советский ученый в области аэро- и гидродинамики, основоположник современной газовой динамики. После смерти Жуковского стал научным руководителем ЦАГИ 

Таким образом, Жуковский разрешил важнейшие вопросы в области аэродинамики и авиации, разработал теоретические основы авиационной техники. Н.Е. Жуковский воспитал поколение ученых, инженеров в различных областях механики. Именно Жуковскому принадлежит идея введения в высших учебных заведениях специальных курсов: «Теория притяжения», «Теория регулирования», «Теоретические основы воздухоплавания», на которых воспитывались кадры специалистов в соответствующих областях знаний. Особенно велики заслуги Жуковского в воспитании авиационных специалистов.

В 1909—1910 гг. в Московском техническом училище и в 1910—1911 гг. в Московском университете Жуковский ввел курс «Теоретические основы воздухоплавания». С 1913 г. Жуковский читает лекции по динамике аэропланов на теоретических курсах для летчиков-добровольцев авиационной школы Московского общества воздухоплавания, которыми он заведовал в 1914—1917 гг.

В 1916 г. Жуковскому удалось организовать при Аэродинамической лаборатории Московского технического училища расчетно-испытательное бюро, в котором была сосредоточена экспериментально-теоретическая работа по созданию самолетов.

Если говорить о творчестве Н.Е. Жуковского во второй половине 90-х годов и в 900-е годы, то нельзя его отделить от деятельности С.А. Чаплыгина.

Сергей Алексеевич Чаплыгин родился 5 апреля 1869 г. в г. Раненбурге (теперь г. Чаплыгин) Рязанской губернии; учился на математическом отделении физико-математического факультета Московского университета. В университете он слушал лекции В.Я. Цингера, А.Г. Столетова, Н.Е. Жуковского и других выдающихся ученых. Под влиянием работ Жуковского по гидродинамике Чаплыгин, еще будучи студентом, написал статью «О движении тяжелых тел в несжимаемой жидкости». В 1890 г. Чаплыгин окончил университет и по ходатайству Жуковского был оставлен для подготовки к профессорскому званию.

Преподавательская деятельность Чаплыгина в высших учебных заведениях началась с 1894 г., когда он стал приват-доцентом Московского университета. В 1895— 1901 гг. он преподавал математику и механику в Межевом институте, в 1896—1906 гг. — механику в Московском техническом училище, а с 1901 г. являлся профессором механики Московских высших женских курсов, которыми заведовал в 1905—1918 гг. Первые научные работы С.А. Чаплыгина были посвящены гидромеханике. В 1893 г. он написал большой мемуар «О некоторых случаях движения твердого тела в жидкости», который был удостоен премии имени Брашмана. В 1897 г. появился второй мемуар под тем же названием — магистерская диссертация Чаплыгина. В отличие от Стеклова, решение которого носило чисто аналитический характер, Чаплыгин дал геометрическую интерпретацию движения твердого тела в жидкости. По этому поводу Жуковский писал, что Чаплыгин «в двух своих прекрасных работах показал, какой силой могут обладать остроумно поставленные геометрические методы исследования». В этих работах Чаплыгина сказалось влияние геометрического направления в решении механических задач, характерного для работ Жуковского.

Уже в начале своей научной деятельности Чаплыгин уделял основное внимание разработке общих методов классической механики. Целый ряд его работ, вышедших на самом рубеже XIX—XX вв., имеет своим предметом задачу о движении тела при наличии неинтегрируемых связей, другие были посвящены движению твердого тела вокруг неподвижной точки. В частности, в статье «О движении твердого тела вращения на горизонтальной плоскости» (1897) были впервые получены общие уравнения движения неголономных систем, служащие обобщением уравнения Лагранжа. Работы Чаплыгина по динамике неголономных систем были продолжены Г.К. Сусловым, П.В. Воронцом, Н.Е. Кочиным и др.

Особое место среди работ Чаплыгина занимают его исследования по механике жидкости и газа. Уже в 90-е годы Чаплыгин проявляет большой интерес к исследованиям струйных течений. В то время струйная теория являлась основой при изучении законов движения тел в жидкости. В 1890 г. Жуковский разработал общий метод решения задач о струйных течениях несжимаемой жидкости. В 1899 г. Чаплыгин, основываясь на исследованиях Жуковского, несколько иным способом решил задачу о струйном обтекании пластинки потоком несжимаемой жидкости («К вопросу о струях в несжимаемой жидкости»). Особенно привлекала Чаплыгина задача о струйном обтекании тел газом, которая, как он писал, была «едва затронута».

В XIX в. был опубликован ряд работ русских и зарубежных ученых по теории газового потока с большими скоростями. Так, например, Сен-Венан в 1839 г. исследовал явление истечения газа из отверстия при больших скоростях течения. Н.В. Маиевский в 1858 г. установил влияние сжимаемости воздуха на сопротивление движению снаряда при скорости полета снарядов, близкой к скорости звука.

В 1902 г. Чаплыгин опубликовал свою знаменитую работу «О газовых струях», в которой он разработал метод, позволяющий во многих случаях найти решение ранее поставленной задачи о прерывном течении сжимаемого газа. Трудность решения состояла в том, что для случая сжимаемой жидкости получаются сложные нелинейные уравнения движения.

В этой работе Чаплыгин писал, что П. Моленброк (1890) составил «дифференциальные уравнения, от которых зависит вопрос о струевых течениях газов», и указал «некоторые частные интегралы этих уравнений, едва ли, впрочем, соответствующие даже теоретически мыслимому движению газа».

Чаплыгин ввел те же независимые переменные, что и Моленброк, а именно вектор скорости и угол, образуемый этим вектором с некоторым направлением, но он выбрал функции, которые «выгоднее рассматривать», а именно: функцию тока и потенциал скоростей, и ввел так называемое преобразование годографа, что позволило нелинейные в физической плоскости уравнения газовой динамики преобразовать в линейные уравнения в системе годографа. Метод, разработанный Чаплыгиным, давал возможность решить задачу о струйном течении газа, если при тех же граничный условиях известно решение соответствующей задачи для несжимаемой жидкости.

Уравнения движения сжимаемой жидкости, полученные Чаплыгиным, справедливы для случая, когда скорость потока нигде не превышает скорости звука.

Чаплыгин применил свою теорию к решению двух задач струйного течения сжимаемой жидкости: истечения из сосуда и обтекания пластинки, перпендикулярной к направлению потока на бесконечности, и нашел точные решения. Это до настоящего времени единственный случай точного решения задач в газовой динамике. Результаты своих теоретических исследований об истечении газа и об обтекании пластинки Чаплыгин сравнил с опытными данными и получил качественное подтверждение своей теории.

Чаплыгин разработал также приближенный метод решения задач газовой динамики, отличающийся своей простотой. Однако его можно применять только для случая течения газа со скоростью, не превышающей примерно половины скорости звука.

Работа Чаплыгина «О газовых струях» является его докторской диссертацией. В свое время она не получила широкого признания. Одной из причин этого было то обстоятельство, что при скоростях, которые тогда использовались в авиации, не возникала необходимость в учете влияния сжимаемости воздуха, а в артиллерии наибольший интерес представляли исследования при скоростях, больших скорости звука. Все значение этой работы для задач авиации раскрылось в начале 50-х годов, когда скорости самолетов возросли настолько, что вопрос об учете влияния сжимаемости воздуха стал важнейшей проблемой. С 1910 г. начинается цикл работ С.А. Чаплыгина по теории крыла. В феврале 1910 г. в Московском математическом обществе Чаплыгин сделал доклад об аэродинамических силах, действующих на крыло самолета. Результаты этих исследований Чаплыгина изложены в его работе «О давлении плоскопараллельного потока на преграждающие тела (к теории аэроплана)», опубликованной в этом же году, а также в его докладе «Результаты теоретических исследований о движении аэропланов», сделанном в ноябре 1910 г. на заседании Научно-технического комитета Московского общества воздухоплавания и изданном в 1911 г, Чаплыгин указал, что источником возникновения сил, действующих на крыло, могут быть «образование поверхностей раздела, присоединенные вихри и особенности бесконечно удаленной точки и связанная с нею многозначность потенциальной функции скоростей». Применение теории струй позволило оценить величину сил, действующих на простейшее крыло — пластинку. Чаплыгин ссылается на соответствующие работы Рэлея, Жуковского и на свою работу «О газовых струях», в которой он дал формулы для определения распределения скоростей и указал путь для вычисления давления в случае обтекания пластинки со срывом струй. Однако величина силы, действующей на пластинку, определенная по формулам теории струй, была значительно меньше опытных данных и «далеко не достаточна, чтобы объяснить явление полета».

Чаплыгин отмечает, что Жуковский установил замечательный закон, позволяющий определять величину подъемной силы, введя понятие циркуляции скорости. Чаплыгин исследует вопрос о подъемной силе, основываясь на том, что появление циркуляции и подъемной силы связано с многозначностью потенциала скоростей, причем рассматривает циркуляцию скорости вокруг бесконечно удаленной точки.

Чаплыгин изучает обтекание изогнутой пластинки при нулевом угле атаки, сложного крыла — изогнутой пластинки с насадкой на переднем конце — и крыльев, «напоминающих крылья птиц, лишь с одною точкою заострения», при различных углах атаки. Он выдвигает положение относительно распределения скоростей по обтекаемому контуру, а именно, что величина скорости должна быть «всюду конечная и непрерывная», т. е. что острая кромка является линией схода потока с верхней и нижней сторон крыла, так как в противном случае на острой кромке профиля была бы бесконечная скорость. Это положение было выдвинуто в этом же году Жуковским в его работе «Geometrische Untersuchungen ?ber die Kuttasche Stromung», в которой он, рассматривая конформное преобразование потока жидкости, указывал, что критическая точка C преобразуемого потока переходит в «точку C с конечной скоростью» потока вокруг профиля (С располагается на задней кромке профиля). Приведенное положение Жуковского и Чаплыгина составляет содержание знаменитого постулата Жуковского—Чаплыгина, который позволил однозначно определить величину циркуляции скорости около профиля крыла. Введение этого постулата указало правильный технический путь для создания профилей крыльев.

Метод, разработанный Чаплыгиным, позволил найти рациональную форму профилей, доказать, что профили для крыльев самолетов должны иметь закругленную переднюю и острую заднюю кромки, получить формулы для определения подъемной силы и момента теоретических профилей. Форма профилей, разработанных Чаплыгиным, получалась инверсированием параболы, и поэтому они назывались профилями инверсии параболы. Как показал в 1911 г. Жуковский, профили, разработанные Чаплыгиным, были идентичны профилям, созданным Жуковским, и впоследствии в советской литературе эти теоретические профили, разработанные в 1910 г. русскими учеными, стали называться профилями Жуковского—Чаплыгина.

В своей работе 1910 г. Чаплыгин получил еще ряд замечательных результатов. Он впервые изучил вопрос о величине продольного момента, действующего на крыло, считая этот вопрос существенным элементом теории крыла. На основе исследования общей формулы для момента подъемной силы он установил простую зависимость продольного момента от угла атаки, которая лишь через несколько лет была получена экспериментально и явилась впоследствии одной из основных аэродинамических характеристик крыла. Чаплыгин показал, что коэффициент продольного момента при больших углах атаки положителен и уменьшается с уменьшением угла атаки, имея отрицательную величину при угле атаки, соответствующем нулевой подъемной силе. При отрицательных углах атаки момент, оставаясь отрицательным, увеличивается по абсолютной величине при увеличении абсолютного значения угла атаки крыла.

Чаплыгин указывал на наличие значительного опрокидывающего момента, действующего на самолет, и предупреждал об опасности быстрого изменения утла атаки. В этих своих работах Чаплыгин вывел интересное свойство изогнутых пластинок, показав, что при нулевом угле атаки подъемная сила пластинок зависит лишь от стрелки прогиба и не зависит от хорды пластинки.

Решив задачу о крыле бесконечного размаха, Чаплыгин отмечал необходимость и важность решения задачи о крыле конечного размаха и при этом полагал, что крыло конечного размаха может быть моделировано вихревой схемой в виде П-образного вихря.

Основываясь на своей работе «О газовых струях», Чаплыгин показал, что результаты его исследований крыла бесконечного размаха, выполненные при условии обтекания тел несжимаемым потоком, могут быть применены к определению аэродинамических характеристик крыльев самолетов того времени. Вместе с тем он отмечал, что при некоторых скоростях полета и углах атаки могут возникнуть местные звуковые скорости, когда может наступать новое явление — течение с разрывом сплошности, и тогда полученные результаты не могут быть применимы.

Идеи С.А. Чаплыгина нашли свое дальнейшее развитие в многочисленных работах советских и зарубежных ученых.

Деятельность Н.Е. Жуковского и С.А. Чаплыгина продолжалась и в советское время. Она будет рассмотрена в следующей главе этой книги.