ВКЛАД ЯКОБИ В РАЗВИТИЕ ДИНАМИКИ
ВКЛАД ЯКОБИ В РАЗВИТИЕ ДИНАМИКИ
Карл Густав Якоби (1804—1851) — один из крупнейших немецких математиков и механиков первой половины XIX в. Он был профессором математики сначала в Кенигсбергском, а затем в Берлинском университетах. В 1829 г. Якоби был избран членом-корреспондентом, а в 1836 г. действительным членом Берлинской академии наук. За свои выдающиеся научные заслуги он был избран членом многих зарубежных академий наук. Русские ученые одними из первых оценили огромное значение его исследований по математике и механике и уже в 1830 г. избрали его членом- корреспондентом Петербургской академии наук; три года спустя (в 1833 г.) ему было присвоено звание почетного члена Петербургской академии наук. Следует отметить, что Карл Якоби живейшим образом интересовался деятельностью Петербургской академии наук. Укреплению связей К.Г. Якоби с русскими научными кругами, в частности с М.В. Остроградским, благоприятствовал личный момент: его брат Мориц, крупный физик (известный в России как Борис Семенович Якоби), был русским академиком (с 1837 г.). К.Г. Якоби — один из создателей теории эллиптических функций, ему принадлежат крупные достижения в области теории чисел, линейной алгебры, интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления. Он ввел в математику функциональные определители, которые часто называют в его честь якобианами. Основной труд Якоби по механике — его замечательные «Лекции по динамике», выполненные в 1842—1843 гг. и изданные его учеником А. Клебшем (1839—1894) после смерти Якоби в 1866 г. Эти лекции представляют собой развитие классической аналитической механики Лагранжа и содержат много новых идей как по математике (теория дифференциальных уравнений в частных производных, вычисление геодезических линий на эллипсоиде), так и по механике.
Исходным моментом исследований Якоби по механике является принцип Гамильтона — Остроградского, предложенный в первоначальной форме ирландским механиком и математиком У.Р. Гамильтоном и в окончательной ферме русским ученым М.В. Остроградским.
В своих «Лекциях» Якоби значительно развил теорию канонических уравнений Гамильтона, существенно расширив класс механических систем, к которым она применима. Изложив принцип Гамильтона и выведя канонические уравнения для любых механических систем, обладающих силовой функцией, в которую может входить время, Якоби применяет к этим уравнениям теорему С. Пуассона, открытую им в связи с другими задачами механики.
КАРЛ ГУСТАВ ЯКОБИ (1804-1851)
Немецкий математик. К. Якоби сделал ряд важных открытий в области теории эллиптических функций, вариационного исчисления, дифференциальных уравнений, теоретической механики и других математических дисциплин
В дальнейшем Якоби находит много различных случаев получения интегралов уравнений движения. Например, рассматривая системы с силовой функцией, Якоби показывает, что в случае, когда можно выбрать такие обобщенные координаты qi, где силовая функция не зависит от координаты qs, а живая сила зависит от нее, можно получить интеграл данной системы уравнений в виде os = const (при этом говорят, что координата qs циклическая).
Важнейший результат К. Якоби — его теорема о том, что канонические уравнения являются уравнениями характеристик некоторого дифференциального уравнения в частных производных первого порядка, т. е. интегральные поверхности указанного уравнения в частных производных состоят из интегральных кривых системы канонических уравнений, определяющих движение механической системы. Тем самым интегрирование канонических уравнений сводится к разысканию полного интеграла уравнений в частных производных.
Дальнейшее обобщение метода Гамильтона — Якоби было осуществлено М.В. Остроградским.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
4. Аналитическая механика и теория Якоби
4. Аналитическая механика и теория Якоби Аналитическая механика, тесно связанная с именем великого Лагранжа, представляет собой совокупность методов, позволяющих быстро написать уравнения движения какой-либо системы, если известен набор параметров, знания которых
1. Дальнейшее развитие механики
1. Дальнейшее развитие механики В предыдущей главе мы не собирались давать сколько-нибудь полного обзора классической механики. Тем более мы не собираемся излагать в этой главе всю классическую физику. Мы отметим здесь лишь ее основные разделы и сделаем несколько
РАЗВИТИЕ ГИДРО-ЭЛЕКТРИКИ
РАЗВИТИЕ ГИДРО-ЭЛЕКТРИКИ Энергия воды предоставляет огромные возможности для новейших применений электричества, особенно в области электрохимии. Покорение водопадов — это самый экономичный из известных методов получения энергии от солнца. Это обуславливается тем
Развитие цивилизации по экспоненциальному закону
Развитие цивилизации по экспоненциальному закону Сегодня мы, не задумываясь, отправляемся на воскресную прогулку за город в автомобиле с двигателем мощностью 200 лошадиных сил. Но на протяжении почти всей эволюции человечества в распоряжении среднестатистического
Дальнейшее развитие теплофизики и атомистики
Дальнейшее развитие теплофизики и атомистики Термодинамика и кинетическая теория газов затрагивали самые глубокие вопросы мировоззрения. Единство сил природы, направленность естественных процессов, неизменность «кирпичей мироздания» —все эти вопросы так или иначе
Дальнейшее развитие теории относительности
Дальнейшее развитие теории относительности Возвращаясь к теории относительности, следует сказать, что создатель этой теории продолжал совершенствовать и развивать ее. В 1907 г. Эйнштейн опубликовал большую статью «О принципе относительности и его следствиях». Здесь
Развитие квантовой теории Эйнштейном
Развитие квантовой теории Эйнштейном Открытие радиоактивных превращений и возникновение представлений об огромных запасах внутриатомной энергии было одним из существенных моментов начавшейся революции в физике. Столь же существенным было возникновение теории
ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ
ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ В разработку теоретических основ авиации огромный вклад внесли Н.Е. Жуковский и С.А. Чаплыгин. Вопросами полета на аппаратах тяжелее воздуха Жуковский заинтересовался еще в конце 80-х годов. В эти
ВКЛАД СОВЕТСКИХ УЧЕНЫХ В РАЗВИТИЕ ИСТОРИИ МЕХАНИКИ
ВКЛАД СОВЕТСКИХ УЧЕНЫХ В РАЗВИТИЕ ИСТОРИИ МЕХАНИКИ История механики сравнительно поздно стала самостоятельной дисциплиной. Отчасти это объясняется промежуточным положением механики на стыке математики, физики и технических наук. Историю механики чаще всего
Развитие радиоастрономии
Развитие радиоастрономии В последние годы установлено, что радиоизлучения испускаются не только грозовыми разрядами или специально созданной технической аппаратурой. Эти излучения непрерывно испускают также и звезды и особенно ядра галактик.Спектры радиоизлучений
ВКЛАД ГАЛИЛЕЯ В НАУКУ
ВКЛАД ГАЛИЛЕЯ В НАУКУ Ученые пытаются достучаться до небес и мечтают преодолеть порог, отделяющий познанное от непознанного. В любой момент, о каком бы ни шла речь, любое исследование начинается с набора правил и уравнений, предсказывающих те явления, которые мы на этот
Развитие представлений о законах сохранения
Развитие представлений о законах сохранения Идея сохранения появилась еще в Древней Греции в виде догадки о наличии неизменных субстанций в мире, где все меняется. Древние материалисты пришли к выводу, что материя как неуничтожима, так и нетворима, и является основой
Космологический вклад Эйнштейна
Космологический вклад Эйнштейна Вклад, значительно способствовавший теоретическому осмыслению природы туманностей, поступил в астрономию из Швейцарии. Марсель Гроссман был одним из выпускников швейцарской Высшей технической школы (Политехникума) в Цюрихе. В его
Энтропия и развитие вселенной
Энтропия и развитие вселенной Реки текут вниз, камни скатываются с горы, движение останавливается из-за трения – прекращаются все относительные движения. Горячие тела остывают, а холодные нагреваются – температуры всех тел мира выравниваются. Таков неотвратимый ход
Дальнейшее развитие теории Бора
Дальнейшее развитие теории Бора Несмотря на эти результаты и заявленную цель работы Бора 1913 г. — разработать общую теорию строения атома, эта теория давала строгое и адекватное объяснение только для атомов водорода и водородно-подобных атомов. Все попытки