ОБЩИЕ УСЛОВИЯ РАЗВИТИЯ МЕХАНИКИ

ОБЩИЕ УСЛОВИЯ РАЗВИТИЯ МЕХАНИКИ

Во второй половине XIX — начале XX в. характер теоретической механики несколько изменился. Предыдущее поколение непосредственно примыкало к основателям аналитической механики, особенно к Эйлеру и Лагранжу Новое поколение механиков исходило из результатов, по лученных в первой половине века главным образом Гамильтоном, Остроградским и Якоби. Оно пользовалось гораздо более разветвленным математическим аппаратом, воспринимало новые физические идеи, связанные в первую очередь с законом сохранения энергии, и отражало в своих работах более сложные требования практики.

В целом развитие механики во второй половине XIX в. отличается еще большей дифференциацией и широтой размаха мысли, чем в предыдущий период. Теперь задачи механики все чаще приводят к созданию новых математических понятий и к проникновению в механику понятий, появившихся в физике; при этом в рамках классической механики возникают некоторые предпосылки релятивистских идей, принадлежащих нашему столетию.

В десятилетия, протекшие с середины XIX в. до Великой Октябрьской революции, русские ученые принимали деятельное участие в разработке многих актуальных проблем механики, а в решение некоторых из них внесли основной вклад.

В рассматриваемое время продолжались исследования по теории гидроскопа, восходящие к Эйлеру. Завершающим в известном смысле явилось открытие в 1888 г. С.В. Ковалевской нового случая вращения твердого тела вокруг неподвижной точки, породившее обширную литературу.

Гораздо более широкий размах и глубину получили работы по устойчивости равновесия и движения материальных систем. Английский ученый Э. Раус (1831—1907) в 1877 г. успешно применил к рассмотрению устойчивости движения метод малых колебаний, использованный еще Лагранжем в задаче об устойчивости равновесия. Вскоре результаты Рауса были далеко перекрыты фундаментальными исследованиями А.М. Ляпунова (1892). Несколько ранее с другой точки зрения подошел к задаче об устойчивости движения Н.Е. Жуковский (1882). Постановка задачи об устойчивости движения и строгие методы ее решения, предложенные Ляпуновым, приобрели затем большое значение и в технике. Во Франции в 80-е и 90-е годы той же проблематикой успешно занимался А. Пуанкаре (1854—1912).

Теория малых колебаний находила все более и более важные приложения в технике. В этой связи упомянем пока лишь работы по динамике процессов регулирования И.А. Вышнеградского (1877 г. и позднее) и широко известные труды А.Н. Крылова по качке корабля и другим техническим вопросам.

В самом конце XIX в. И.В. Мещерский положил начало новому направлению в механике переменных масс, все значение которого выявилось уже в наше время — в эпоху развитого ракетостроения, искусственных спутников и космических кораблей. Созданная Мещерским динамика переменной массы лежит в основе современной теории реактивного движения. В это же время, на рубеже XIX—XX вв., замечательный вклад в теорию ракет внес К.Э. Циолковский. Крупные и разнообразные изыскания проведены были по механике жидкостей и газов. Так, было продолжено изучение задачи об обтекании твердого тела (Г. Кирхгоф, Д. Ж. Рэлей, Д.К. Бобылев, Н.Е. Жуковский, В.А. Стеклов и др.) и задачи Дж. Стокса о движении твердого тела, содержащего внутри жидкие массы (Гельмгольц, Нейман, Жуковский, Стеклов); рассмотрено явление гидравлического удара (Жуковский); создана гидродинамическая теория смазки (Петров, Рейнольдс). Решающую роль в дальнейшем развитии аэродинамики сыграла разработка учения о вихревых движениях (Гельмгольц и др.)» широко развитого и использованного рядом русских ученых. Н.Е. Жуковский и С.А. Чаплыгин получили первые фундаментальные результаты в изучении подъемной силы крыла для случая идеальной жидкости, результаты, которые легли в основу авиационной науки. Эти же два ученых явились создателями крупнейшей советской школы аэродинамики и газовой динамики.

Большой цикл работ был посвящен фигурам равновесия вращающейся жидкости и вопросу их устойчивости — проблемам, которые изучали еще Клеро и другие ученые XVIII в. В рассматриваемое время ими занимались А. Пуанкаре и А.М. Ляпунов, причем последний получил наиболее полные и точные результаты. Мы бегло очертили только некоторые основные направления развития механических наук, оставив пока в стороне замечательные работы по теории упругости и ее приложениям, по баллистике и другие, к которым еще вернемся.

Эволюция механики во второй половине XIX в. отражала происшедшие в это время и несколько ранее сдвиги в производстве. Новые исследования в теории упругости и сопротивления материалов были вызваны интенсивным строительством мостов, железных дорог и развитием машиностроения. Конструирование и распространение все более сложных механизмов и машин создало возможность развития новых методов экспериментальной и прикладной механики. Важные механические задачи встали при строительстве военного и торгового флота.

В начале XX в. бурный рост исследований по аэродинамике был обусловлен развитием авиации и выдвинутых ею проблем физического, расчетного и конструкторского характера. Изучение процессов, происходящих при движении со звуковыми и сверхзвуковыми скоростями, диктовалось ростом дальности артиллерийской стрельбы. Возникновение газовой динамики также связано с баллистикой, хотя расцвет этой науки падает уже на наше время и вызван в первую очередь тем, что скорости реактивных самолетов стали превышать скорость звука в воздухе. Вместе с тем выдвинутые в процессе развития науки новые глубокие, граничащие с физикой и астрономией проблемы механики потребовали дальнейшей разработки как принципиальных основ этой науки, так и методов математического исследования.

Во второй половине XIX в. механика, весьма разнообразная по своей проблематике, более или менее отчетливо разделяется на теоретическую и прикладную. Теоретическая механика разрабатывалась в России главным образом на университетских кафедрах прикладной математики и в Академии наук, прикладная (техническая) механика — преимущественно в высших технических учебных заведениях и меньше в университетах. Что касается принципиальных положений механики и основных ее понятий, то они рассматривались только спорадически, и важнейшие работы по этим вопросам принадлежат физикам.

Расширение круга конкретных задач потребовало прежде всего разработки математического аппарата. Не случайно поэтому проблемы общей механики разрабатывались именно на кафедрах прикладной математики. Многие проблемы механики, после того как было осмыслено их физическое содержание, стали задачами чисто математическими. Не удивительно, что им уделяли внимание математики, однако специфика задач механики подчас их интересовала мало. Во многих случаях проблемы механики явились лишь толчком к разработке новых и углублению старых математических методов. Этим и объясняется то, что в рассматриваемый период, когда речь идет о решении частных задач, трудно указать грань между математикой и механикой.

Таким образом, исследования в области механических наук развивались под воздействием: 1) запросов практики и техники, 2) внутренней логики развития механики, 3) влияния научных школ и традиций на кафедрах, 4) запросов смежных наук.

Удельный вес указанных факторов в конкретном развитии, постановке и решении каждой отдельной проблемы был различным. Однако если рассматривать механику как науку о некоторых явлениях (т. е. оставив вне поля зрения техническую механику, которая применяет результаты механики к конкретным задачам техники), то можно отметить вполне закономерную тенденцию.

Начальная стадия развития механики, точно так же как и других наук о природе, была связана прежде всего с конкретной технической (в широком смысле слова) проблематикой, определявшейся данными историческими условиями. В дальнейшем направление и характер этого процесса стали зависеть не только от запросов техники, но и от внутренней логики развития науки, обусловленной самим предметом познания и спецификой применяемых методов исследования. В этот единый, внутренне связанный процесс развития механики ученые отдельных стран в зависимости от уровня развития этой науки в той или иной стране вносили тот или иной вклад.

Чтобы понять процесс развития механики в России, необходимо рассмотреть его в этом общем потоке мирового развития.

При всей специфичности русских условий русские механики работали не изолированно, а в неразрывной связи с мировой наукой.

В течение всего XIX в. международные связи русских ученых, работавших в области теоретической и прикладной механики, были весьма разнообразны. Это были личные контакты, осуществлявшиеся при поездках М.В. Остроградского во Францию или научных командировках П.Л. Чебышева, Н.П. Петрова и других во Францию, Англию, Германию, профессорская деятельность С.В. Ковалевской в Стокгольме, участие Н.Е. Жуковского и А.М. Ляпунова в международных съездах, участие А.Н. Крылова в работах Английского общества инженеров-судостроителей, а также переписка русских ученых со многими учеными Западной Европы.

Ученые России принимали участие в международных дискуссиях по спорным проблемам. Упомянем дискуссию последователей И.А. Вышнеградского с французским ученым Лекорню по вопросам автоматического регулирования, дискуссию А.М. Ляпунова и Дж. Дарвина, закончившуюся победой первого, выяснение основ аэродинамики Н.Е. Жуковским совместно с Л. Прандтлем, Т. Карманом и т. д.

Иностранные ученые высоко ценили многие работы русских механиков. Укажем хотя бы на премию, присужденную Французской академией наук С.В. Ковалевской за работу о вращении твердого тела, оценку трудов А.М. Ляпунова о фигурах равновесия вращающейся жидкости, данную А. Пуанкаре и Дж. Джинсом, исключительно высокую оценку гидродинамиками всего мира работ Н.П. Петрова по гидродинамической теории смазки (данную А. Зоммерфельдом), награждение Английским обществом судостроителей золотой медалью А.Н. Крылова за его основополагающие исследования по теории корабля. Нередко, однако, работы русских ученых оставались либо вовсе неизвестными, либо малоизвестными на Западе, а это порой приводило к повторному открытию западноевропейскими учеными того, что уже было найдено в России. Так было с рядом работ Остроградского, с исследованиями Циолковского, Мещерского и некоторыми другими.

Быстро развивавшаяся в России механика, уверенно завоевавшая почетное место в мировой науке, сталкивалась с серьезными препятствиями. Царское правительство и его учреждения крайне скупо субсидировали научно-исследовательские работы, тормозя тем самым в первую очередь развитие экспериментальных исследований. Не случайно поэтому экспериментальные исследования выполнялись главным образом на средства частных лиц или обществ. П.Л. Чебышев тратил собственные средства на то, чтобы конструировать механизмы, Н.Е. Жуковский проводил многие опыты в Московском техническом училище на свои личные средства и на средства Общества содействия успехам опытных наук и их практических применений им. X. С. Леденцова. Некоторые лаборатории по аэродинамике были созданы благодаря материальной поддержке отдельных частных лиц и общественных научных организаций.

Положительное влияние на развитие механики в России оказала деятельность научных обществ, возникших в рассматриваемый период в университетских городах: Московское и другие математические общества, общества естествоиспытателей, Русское техническое общество, всероссийские съезды естествоиспытателей и врачей и другие способствовали коллективному обсуждению вопросов.

Промышленность и транспорт во второй половине XIX в. настоятельно нуждались в руководителях и инженерах высокой квалификации. Это способствовало росту специального технического и университетского образования. В конце XIX в. в России было 11 высших технических учебных заведений, в которых обучалось 5500 студентов; военных инженеров готовили в основанных в 1855 г. Артиллерийской и Инженерной академиях. В первой половине XIX в. в России было всего три специальных высших технических учебных заведения. В результате развития высшего технического и университетского образования возросло число лиц, занимающихся научно-педагогической деятельностью в области естественных и технических наук, а также объем исследовательских работ, в частности в области механики. Появлялись новые журналы, формировались отдельные школы, обеспечившие внутреннюю преемственность в развитии идей и проблематики.

Эти общие черты развития механики во второй половине XIX — начале XX в. создали необходимые условия для дальнейшего улучшения постановки преподавания механики в высших учебных заведениях России.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Два условия

Из книги автора

1940год. Январь. Май «ЖЭТФ» Странное слово, не правда ли? Но все объясняется просто. Это начальные буквы слов «Журнал экспериментальной и теоретической физики». Внешне это не очень заметный журнал. Серая обложка, никаких украшений. Внутри журнал сплошь заполнен формулами,


1. Общие идеи и основные принципы

Из книги автора

1. Общие идеи и основные принципы Понятие вероятности играло важную роль в первых физических трактовках волновой механики. Чувствовалось, что возникла общая теория, в которой все законы новой механики имеют вероятностный характер. К этой теории, внешне очень новой и


Сказочные условия жизни

Из книги автора

Сказочные условия жизни Вы пробуете сделать шаг в каюте небесного корабля — и плавно, как пушинка, парите к потолку: легкое усилие мускулов ваших ног вполне достаточно, чтобы сообщить вашему невесомому телу заметную поступательную скорость. Вы летите к потолку (нельзя


2. Общие сочинения по истории и методологии физики

Из книги автора

2. Общие сочинения по истории и методологии физики Андерсон Д. Открытие электрона. — М.: Атомиздат, 1968.Биографический словарь деятелей естествознания и техники.— М.: БСЭ, 1959.Брегг В. Г. История электромагнетизма.—М — Л.: Гостехиздат, 1947.Вилейтнер Г История математики от


ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ

Из книги автора

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ АЭРОДИНАМИКА. НАЧАЛО РАЗВИТИЯ ГАЗОВОЙ ДИНАМИКИ В разработку теоретических основ авиации огромный вклад внесли Н.Е. Жуковский и С.А. Чаплыгин. Вопросами полета на аппаратах тяжелее воздуха Жуковский заинтересовался еще в конце 80-х годов. В эти


Физические условия изменяют спектры

Из книги автора

Физические условия изменяют спектры Мы уже говорили, что оптические спектры зависят от тех условий, в которых находятся атомы. Сильные магнитные поля изменяют оптические спектры атомов; они расщепляют спектральные линии. Таково же действие сильных электрических полей.


Глава I Общие сведения

Из книги автора

Глава I Общие сведения В этой главе мы напомним некоторые элементарные сведения о строении вещества, необходимые для понимания принципа действия ядерных


Три условия для ранней Вселенной

Из книги автора

Три условия для ранней Вселенной Сусуму Окубо, американский теоретик японского происхождения, о космологии не думал. Он занимался физикой элементарных частиц, когда там в середине 1950-х всплыла загадочная асимметрия. До того времени молчаливо считалось, что в микромире


ОБЩИЕ СВЕДЕНИЯ

Из книги автора

ОБЩИЕ СВЕДЕНИЯ Какая документация необходима для подключения загородного дома к электрическим сетям?В первую очередь следует пригласить инспектора Энергонадзора, которому необходимо предъявить следующую документацию:– проект энергоснабжения, согласованный с


ОБЩИЕ ПРИНЦИПЫ

Из книги автора

ОБЩИЕ ПРИНЦИПЫ В определенном смысле детекторы — и ATLAS, и CMS — представляют собой логическое развитие того пути, которое Галилей и другие ученые начали несколько столетий назад. Тогда с изобретения микроскопа началось развитие техники, которая позволяла физикам


Глава 12 Перспективы развития теории гравитации

Из книги автора

Глава 12 Перспективы развития теории гравитации То, что мы называем прогрессом, – является заменой одной неприятности на другую. Генри Хейвлок Эллис Теории гравитации альтернативные ОТО Ничто не делает нашу жизнь столь приятной, как ее неизбежная


6.2. Условия наблюдений и требования к перспективным наблюдательным системам

Из книги автора

6.2. Условия наблюдений и требования к перспективным наблюдательным системам Рассмотрим подробнее условия наблюдений и требования к современным и будущим системам наблюдений.Для осуществления мероприятий по защите Земли от столкновений с астероидами система


10.1. Проблема противодействия — общие аспекты

Из книги автора

10.1. Проблема противодействия — общие аспекты Растущее понимание существа астероидно-кометной опасности и ее текущего состояния сформировало определенную методологию последовательного решения проблемы астероидной опасности. Эту методологию предложено основывать на