VII. МЕХАНИКА В XIX ВЕКЕ

VII.

МЕХАНИКА В XIX ВЕКЕ

РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ

Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В четырехлетнем возрасте он неплохо знал географию и свободно читал литературу на английском языке, а восьми лет овладел итальянским и французским языками, изучал арабский, санскрит и латынь. Особенно большую склонность проявлял юноша к математике.

В 1824 г. Гамильтон поступил в Тринити-колледж Дублинского университета, где успешно изучал математические науки и разрабатывал геометрическую оптику, или теорию лучей. В возрасте 22 лет молодой ученый был назначен профессором астрономии колледжа св. Андрея Дублинского университета и королевским астрономом Ирландии. В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лекции по астрономии.

В 1837 г. Гамильтон был избран президентом Ирландской академии наук. Научные заслуги его нашли широкое признание во всем мире. В частности, в 1838 г. он был избран членом-корреспондентом Петербургской академии наук.

В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знаменитых работ — «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практических запросов их применения в оптических приборах. В третьем добавлении к этому труду ученый на основании сложных математических вычислений предсказал существование нового, до тех пор неизвестного явления — внешней и внутренней конической рефракции в двухосных кристаллах. Открытие Гамильтона вызвало огромный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.

Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый принцип наименьшего действия. Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и названная им «действием», должна иметь некоторое минимальное значение. Несколько позже Гамильтона и независимо от него принцип наименьшего действия был разработан русским ученым М.В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона — Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики (функция Гамильтона Н) оказалась при довольно широких условиях совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями, но последнее достаточно полно раскрылось лишь через столетие.

Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и законченном виде: он вел свои исследования, переходя к механике, преимущественно в предположении, что имеет дело с системой свободных материальных точек, взаимодействующих с силами, зависящими только от взаимных расстояний. Обобщение результатов и методов Гамильтона, устранение излишних ограничений, тщательная разработка математических методов является заслугой К. Якоби и М.В. Остроградского. Поэтому часто можно встретить в литературе термин «теория Гамильтона — Якоби», но исторически более справедливо говорить о теории Гамильтона — Якоби — Остроградского.

Эта теория является основным достижением аналитической механики XIX в. Поначалу казалось, что ее главное значение в развитии аналитических методов. Но более глубокое выявление связи механики с оптикой и раскрытие возможности нового геометрического истолкования механических проблем имели принципиальное значение. Во второй половине XIX в. накопление новых фактов и разработка новых методов в аналитической механике шло главным образом по линии геометризации. В начале XX столетия, когда это направление сочеталось с новыми течениями в физике, именно на созданной им основе были пересмотрены основные понятия классической механики.

УИЛЬЯМ РОУАН ГАМИЛЬТОН (1805—1865)

Английский математик и механик. Гамильтон внес большой вклад в развитие вариационных принципов механики. Построил систему комплексных чисел, так называемых кватернионов 

Труды Гамильтона по механике получили высокую оценку. В 1842 г. па ежегодном собрании Британской ассоциации в Манчестере К. Якоби сказал: «Гамильтон — это Лагранж вашей страны». В 1866 г. Тэт охарактеризовал работу Гамильтона по динамике как «крупнейшее дополнение, полученное теоретической динамикой с тех пор, как были достигнуты великие успехи Ньютоном и Лагранжем». В 1835 г. Гамильтон был награжден золотой медалью Английского королевского общества.

Гамильтона всегда привлекала проблема мнимых величин, значение и геометрическая природа которых не были ясны математикам того времени. Замечательным вкладом в науку явилось открытие им в 1843 г. исчисления кватернионов — своеобразной системы чисел, представляющей собой обобщенную комплексную величину, которая состоит из суммы четырех членов. Первый член был назван ученым скаляром, три остальных — векторами (термин, введенный Гамильтоном и получивший широкое распространение в физике, механике и технических науках). В основе арифметики кватернионов лежат не две единицы, как в арифметике комплексных чисел (т. е. действительная и мнимая единицы), а четыре, операции над которыми подчинены определенным законам. Особые трудности представило для Гамильтона установление закона умножения кватернионов, который он нашел много времени спустя после того, как разработал правила их сложения и вычитания.

Гамильтон с большой глубиной и подробностью разработал теорию кватернионов, ее приложения в геометрии и механике, а также кватернионный и векторный анализы. Развитию этой теории он посвятил почти целиком последние 22 года своей жизни. В 1853 г. был опубликован капитальный труд Гамильтона по этой теории под названием «Лекции о кватернионах».

Историческая роль этой работы велика: во-первых, в ней заложены основы нынешнего векторного исчисления; во-вторых, теория кватернионов Гамильтона является одним из главных источников развития такой отрасли математики, как некоммутативная алгебра, т. е. алгебра, в которой не действует переместительный закон умножения. Такая некоммутативная алгебра получила широкое применение в современной теоретической физике.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Глава I. Классическая механика

Из книги автора

Глава I. Классическая механика 1. Кинематика и динамика В этой небольшой главе мы отнюдь не собираемся делать какого-либо, даже краткого, обзора принципов классической механики и, тем более, критически анализировать эту область физики. Для этого недостаточно было бы и


2. Квантовая механика

Из книги автора

2. Квантовая механика Очень трудно даже совершенно поверхностно излагать квантовую механику, не пользуясь математическим формализмом, потому что можно сказать, сущность этой новой механики заключается именно в ее формализме. Тем не менее мы попытаемся дать читателю


Относительность и механика

Из книги автора

Относительность и механика Теория относительности с необходимостью возникает из серьезных и глубоких противоречий в старой теории, из которых, казалось, не было выхода. Сила новой теории заключается в согласованности и простоте, с которой она разрешает все эти


I. АНТИЧНАЯ МЕХАНИКА

Из книги автора

I. АНТИЧНАЯ МЕХАНИКА Началом расцвета механики как науки можно считать XVII век — век бурного развития математического естествознания. Именно тогда сформировались основные законы классической механики. Однако зарождение механических знаний относится к глубокой


МЕХАНИКА ГЕРЦА

Из книги автора

МЕХАНИКА ГЕРЦА В XVII в. трудами Галилея и Ньютона были заложены принципиальные основы классической механики.В XVIII и XIX вв. Эйлер, Даламбер, Лагранж, Гамильтон, Якоби, Остроградский, исходя из этих основ, построили великолепное здание аналитической механики и разработали ее


МЕХАНИКА В ВЫСШЕЙ ШКОЛЕ

Из книги автора

МЕХАНИКА В ВЫСШЕЙ ШКОЛЕ С 30-х годов XIX в. начал быстро повышаться уровень преподавания механики в Московском университете, стала вестись исследовательская работа. В Петербургском университете курс механики с 1819 по 1846 г. читал профессор Д.С. Чижов (1785—1853), лекции которого


НЕЕВКЛИДОВА МЕХАНИКА

Из книги автора

НЕЕВКЛИДОВА МЕХАНИКА Неевклидова механика, т. е. классическая механика в неевклидовом пространстве, и прежде всего в пространстве Лобачевского, возникла в конце 60-х годов XIX в., когда идеи Лобачевского начали получать признание математиков.Основным стимулом развития


Механика Ньютона

Из книги автора

Механика Ньютона Теория тяготения Ньютона без использования его законов механики не была бы создана. Опуская детали, которые можно найти и в школьном учебнике физики, приведем эти три основных закона в окончательном виде. Без всякого сомнения, они имеют фундаментальное


4.1. Англия в XIX веке

Из книги автора

4.1. Англия в XIX веке Невозможно найти прямую связь между такими событиями как открытие Фарадеем самоиндукции (1831), введением Максвеллом тока смещения (1867) и, скажем, парламентской реформой 1832 года, образованием либеральной партии (1868) или «железнодорожной лихорадкой» 30-40-х


Скорость полета в XXI веке

Из книги автора

Скорость полета в XXI веке «Вояджер-1» (разогнавшись с помощью гравитационных пращей вокруг Юпитера и Сатурна) отдаляется от Солнечной системы со скоростью 17 километров в секунду. В «Интерстеллар» космолет «Эндюранс» путешествует от Земли до Сатурна в течение двух