IV. МЕХАНИКА ЭПОХИ ВОЗРОЖДЕНИЯ
IV.
МЕХАНИКА ЭПОХИ ВОЗРОЖДЕНИЯ
Начальный этап разложения феодально-крепостнических форм сельского хозяйства, рост городов и существенное увеличение роли городского производства, как следствие этого — бурное развитие техники, расширение международной торговли, бывшее одним из стимулов великих географических открытий, — вот причины тех глубоких социальных сдвигов, которые определяли историю Западной Европы в XV—XVI вв. и породили движение, называемое Возрождением.
Эти социальные сдвиги обусловили и радикальное изменение основного направления науки вообще и естественных наук в частности.
Естественные науки получили обширный материал, нуждавшийся в объяснении и систематизации.
Необходимость решения многочисленных новых технических проблем требовала преодоления существующего разрыва между наукой и практикой. Этому способствовало и приобщение к науке людей, непосредственно связанных с производством, — инженеров, архитекторов, ремесленников, которых не могли удовлетворить абстрактные схоластические рассуждения и теоретические спекуляции.
С другой стороны, в технике наступает такой момент, когда ее дальнейшее развитие становится невозможным без создания некоего теоретического базиса, т. е. техника потребовала широких и интенсивных научных исследований.
Механика оказалась одной из тех наук, которые испытали наиболее сильное влияние этих новых веяний. В исследованиях в области механики нуждались и астрономия, и военное дело (особенно артиллерия), и гидротехника, и строительство, и архитектура.
Но при этом механики эпохи Возрождения опирались в своем творчестве на результаты деятельности своих предшественников — ученых Востока и Западной Европы как в смысле критического освоения античного научного наследия, так и в смысле творческой разработки некоторых проблем механики.
Одним из итогов развития античной цивилизации было разобщение тех двух традиций, которые теперь в истории науки принято считать ремесленной и теоретической. Это в полной мере относится и к характеру античной механики, которая (в нашем современном понимании) объединяла три достаточно разнородные части античного научного наследия[7]. Это, во-первых, учение о пространстве, времени, материи, о движении и его источнике, принадлежащее теоретической (философской) традиции (античная «динамика»). Во-вторых, античная «кинематика»; это главным: образом математические методы, которые разрабатывались в астрономии, а именно кинематико-геометрическое моделирование движения небесных тел. Третье направление — античная статика и гидростатика — объединяет теоретические исследования Архимеда, проведенные со всей строгостью аксиоматического метода, и практические правила, объясняющие действие различных механических приспособлений («простых машин»), т. е. «техническую механику» своего времени. Статика и гидростатика Архимеда, естественно, принадлежат теоретической традиции, «техническая механика» древних — ремесленной традиции, традиции архитекторов, строителей и военных инженеров.
Столь же разобщенными продолжали оставаться три направления механических исследований и в средние века. Это в равной мере относится к развитию механических представлений как на средневековом Востоке, так и позднее в Западной Европе.
Начальным этапом развития механики на средневековом Востоке принято считать перевод и комментирование сочинений античных авторов.
Комментирование Аристотеля лежит в основе цикла трактатов о сущности движения и его источнике («движущей силе», «первом двигателе» и т. д.). Это комментирование послужило тем фундаментом, на который опиралась созданная впоследствии в Западной Европе теория «импетуса». Существенное влияние на формирование представлений о сущности и источнике движения оказала также продолжительная дискуссия в первой половине XII в. между Ибн-Рошдом и Ибн-Баджжей.
На средневековом Востоке интенсивно развивалось и кинематическое направление античной механики. Это было обусловлено необходимостью обработки результатов астрономических наблюдений, которые проводились в многочисленных обсерваториях. В зиджах IX—XV вв. и в большом количестве специальных трактатов разрабатывались принципы кинематико-геометрического моделирования видимого движения небесных тел. Однако, отправляясь от античной традиции, восточные астрономы сделали существенный шаг вперед в разработке представлений о кинематической сущности движения тел, а некоторые из них близко подошли к таким фундаментальным понятиям, как скорость неравномерного движения точки по окружности и мгновенная скорость в точке.
С переводом и комментированием трудов Архимеда связано развитие геометрической статики в странах Ближнего и Среднего Востока. Целый ряд трактатов посвящен теории весомого рычага и теории взвешивания. Значительное развитие получило и кинематическое направление античной статики, восходящее к «Механическим проблемам» псевдо-Аристотеля. В частности, влияние «Механических проблем» сказалось на получившем широкое распространение в средневековой Европе трактате «О корастуне» Сабита ибн-Корры.
В то же время большое значение на средневековом Востоке имела и ремесленная традиция. Содержанием многих специальных трактатов и специальных разделов восточных энциклопедий являются правила действия «простых машин», устройств для поднятия тяжестей, воды для поливки полей и т. д.
Характерной особенностью средневековой европейской механики является то, что большинство ее проблем рассматривалось не столько в механическом, сколько в общефилософском плане. Университетская наука, которая занималась этими проблемами, была, как правило, совершенно оторвана от технической практики.
Теоретические исследования в области статики преимущественно представляли собой дальнейшее развитие кинематического направления, восходящего к «Механическим проблемам» (трактаты «О тяжестях» Иордана Неморария и его школы).
Что касается традиции, связанной с геометрической статикой и гидростатикой Архимеда, то она не получила почти никакого развития и возродилась по-настоящему лишь в XVI в.
Астрономическое направление кинематических исследований в средневековой Европе почти не разрабатывалось.
Исследования в области кинематики, наиболее крупные из которых принадлежат Герарду Брюссельскому и родоначальнику Мертонской школы в Кембридже Томасу Брадвардину, были чисто умозрительными. Зачатки представлений о фундаментальных понятиях кинематики, таких, как скорость и ускорение неравномерного движения, появляются в XIV в. Их развитие связано с учением о «широтах форм», или «конфигурации качеств», истоки которого восходят к логико-философским спорам о понятии формы. Это учение, будучи вполне средневековым по своему духу и методам, оказалось практически бесплодным, несмотря на то что содержало ряд моментов, получивших развитие в математике переменных величин и на ранних этапах классической механики.
В поисках ответа на вопрос о сущности и источнике движения, причине его продолжения и механизме его передачи ученые средневековой Европы пришли к теории «импетуса», наиболее четко сформулированной Жаном Буриданом и применявшейся при изучении падения тела, его движения в пустоте и движения брошенного тела.
Для средневековой механики характерно дальнейшее углубление пропасти между теоретической и ремесленной традициями. Все, что в какой-то мере связано с ремесленной традицией, становится достоянием техники, к которой представители университетской науки относились с пренебрежением.
Таковы те результаты, с которыми механика вступила в эпоху Возрождения.
Наступление нового периода ознаменовано прежде всего новым отношением к механике[8], которая рассматривается как «благороднейшее из искусств, сочетающее с «благородством» величайшую пользу в житейских делах»{66}
Тенденция к возвышению прикладной механики заметна в посвящении Анри Монантейля к изданию «Механических проблем». Обращаясь к королю Генриху IV, он просит не презирать механику как нечто «неблагородное», ибо «наш мир есть машина, и притом машина величайшая, эффективнейшая, прочнейшая, прекраснейшая»{67}.
Когда Леонардо да Винчи говорит, что «механика — рай математических наук, ибо посредством нее достигают математического плода»{68}, то он имеет в виду техническую деятельность, которая реализует на практике теоретические положения «математических наук», под которыми он понимает и собственно математику, и физику, и астрономию.
Рассмотрим основные достижения механики Возрождения (в современном ее понимании), в формирование которой внесли свой вклад такие крупнейшие ученые, как Николай Кузанский, Леонардо да Винчи, Стевин, Коперник, Тарталья, Бенедетти, Кардано, Кеплер и др.