IV. МЕХАНИКА ЭПОХИ ВОЗРОЖДЕНИЯ

IV.

МЕХАНИКА ЭПОХИ ВОЗРОЖДЕНИЯ

Начальный этап разложения феодально-крепостнических форм сельского хозяйства, рост городов и существенное увеличение роли городского производства, как следствие этого — бурное развитие техники, расширение международной торговли, бывшее одним из стимулов великих географических открытий, — вот причины тех глубоких социальных сдвигов, которые определяли историю Западной Европы в XV—XVI вв. и породили движение, называемое Возрождением.

Эти социальные сдвиги обусловили и радикальное изменение основного направления науки вообще и естественных наук в частности.

Естественные науки получили обширный материал, нуждавшийся в объяснении и систематизации.

Необходимость решения многочисленных новых технических проблем требовала преодоления существующего разрыва между наукой и практикой. Этому способствовало и приобщение к науке людей, непосредственно связанных с производством, — инженеров, архитекторов, ремесленников, которых не могли удовлетворить абстрактные схоластические рассуждения и теоретические спекуляции.

С другой стороны, в технике наступает такой момент, когда ее дальнейшее развитие становится невозможным без создания некоего теоретического базиса, т. е. техника потребовала широких и интенсивных научных исследований.

Механика оказалась одной из тех наук, которые испытали наиболее сильное влияние этих новых веяний. В исследованиях в области механики нуждались и астрономия, и военное дело (особенно артиллерия), и гидротехника, и строительство, и архитектура.

Но при этом механики эпохи Возрождения опирались в своем творчестве на результаты деятельности своих предшественников — ученых Востока и Западной Европы как в смысле критического освоения античного научного наследия, так и в смысле творческой разработки некоторых проблем механики.

Одним из итогов развития античной цивилизации было разобщение тех двух традиций, которые теперь в истории науки принято считать ремесленной и теоретической. Это в полной мере относится и к характеру античной механики, которая (в нашем современном понимании) объединяла три достаточно разнородные части античного научного наследия[7]. Это, во-первых, учение о пространстве, времени, материи, о движении и его источнике, принадлежащее теоретической (философской) традиции (античная «динамика»). Во-вторых, античная «кинематика»; это главным: образом математические методы, которые разрабатывались в астрономии, а именно кинематико-геометрическое моделирование движения небесных тел. Третье направление — античная статика и гидростатика — объединяет теоретические исследования Архимеда, проведенные со всей строгостью аксиоматического метода, и практические правила, объясняющие действие различных механических приспособлений («простых машин»), т. е. «техническую механику» своего времени. Статика и гидростатика Архимеда, естественно, принадлежат теоретической традиции, «техническая механика» древних — ремесленной традиции, традиции архитекторов, строителей и военных инженеров.

Столь же разобщенными продолжали оставаться три направления механических исследований и в средние века. Это в равной мере относится к развитию механических представлений как на средневековом Востоке, так и позднее в Западной Европе.

Начальным этапом развития механики на средневековом Востоке принято считать перевод и комментирование сочинений античных авторов.

Комментирование Аристотеля лежит в основе цикла трактатов о сущности движения и его источнике («движущей силе», «первом двигателе» и т. д.). Это комментирование послужило тем фундаментом, на который опиралась созданная впоследствии в Западной Европе теория «импетуса». Существенное влияние на формирование представлений о сущности и источнике движения оказала также продолжительная дискуссия в первой половине XII в. между Ибн-Рошдом и Ибн-Баджжей.

На средневековом Востоке интенсивно развивалось и кинематическое направление античной механики. Это было обусловлено необходимостью обработки результатов астрономических наблюдений, которые проводились в многочисленных обсерваториях. В зиджах IX—XV вв. и в большом количестве специальных трактатов разрабатывались принципы кинематико-геометрического моделирования видимого движения небесных тел. Однако, отправляясь от античной традиции, восточные астрономы сделали существенный шаг вперед в разработке представлений о кинематической сущности движения тел, а некоторые из них близко подошли к таким фундаментальным понятиям, как скорость неравномерного движения точки по окружности и мгновенная скорость в точке.

С переводом и комментированием трудов Архимеда связано развитие геометрической статики в странах Ближнего и Среднего Востока. Целый ряд трактатов посвящен теории весомого рычага и теории взвешивания. Значительное развитие получило и кинематическое направление античной статики, восходящее к «Механическим проблемам» псевдо-Аристотеля. В частности, влияние «Механических проблем» сказалось на получившем широкое распространение в средневековой Европе трактате «О корастуне» Сабита ибн-Корры.

В то же время большое значение на средневековом Востоке имела и ремесленная традиция. Содержанием многих специальных трактатов и специальных разделов восточных энциклопедий являются правила действия «простых машин», устройств для поднятия тяжестей, воды для поливки полей и т. д.

Характерной особенностью средневековой европейской механики является то, что большинство ее проблем рассматривалось не столько в механическом, сколько в общефилософском плане. Университетская наука, которая занималась этими проблемами, была, как правило, совершенно оторвана от технической практики.

Теоретические исследования в области статики преимущественно представляли собой дальнейшее развитие кинематического направления, восходящего к «Механическим проблемам» (трактаты «О тяжестях» Иордана Неморария и его школы).

Что касается традиции, связанной с геометрической статикой и гидростатикой Архимеда, то она не получила почти никакого развития и возродилась по-настоящему лишь в XVI в.

Астрономическое направление кинематических исследований в средневековой Европе почти не разрабатывалось.

Исследования в области кинематики, наиболее крупные из которых принадлежат Герарду Брюссельскому и родоначальнику Мертонской школы в Кембридже Томасу Брадвардину, были чисто умозрительными. Зачатки представлений о фундаментальных понятиях кинематики, таких, как скорость и ускорение неравномерного движения, появляются в XIV в. Их развитие связано с учением о «широтах форм», или «конфигурации качеств», истоки которого восходят к логико-философским спорам о понятии формы. Это учение, будучи вполне средневековым по своему духу и методам, оказалось практически бесплодным, несмотря на то что содержало ряд моментов, получивших развитие в математике переменных величин и на ранних этапах классической механики.

В поисках ответа на вопрос о сущности и источнике движения, причине его продолжения и механизме его передачи ученые средневековой Европы пришли к теории «импетуса», наиболее четко сформулированной Жаном Буриданом и применявшейся при изучении падения тела, его движения в пустоте и движения брошенного тела.

Для средневековой механики характерно дальнейшее углубление пропасти между теоретической и ремесленной традициями. Все, что в какой-то мере связано с ремесленной традицией, становится достоянием техники, к которой представители университетской науки относились с пренебрежением.

Таковы те результаты, с которыми механика вступила в эпоху Возрождения.

Наступление нового периода ознаменовано прежде всего новым отношением к механике[8], которая рассматривается как «благороднейшее из искусств, сочетающее с «благородством» величайшую пользу в житейских делах»{66}

Тенденция к возвышению прикладной механики заметна в посвящении Анри Монантейля к изданию «Механических проблем». Обращаясь к королю Генриху IV, он просит не презирать механику как нечто «неблагородное», ибо «наш мир есть машина, и притом машина величайшая, эффективнейшая, прочнейшая, прекраснейшая»{67}.

Когда Леонардо да Винчи говорит, что «механика — рай математических наук, ибо посредством нее достигают математического плода»{68}, то он имеет в виду техническую деятельность, которая реализует на практике теоретические положения «математических наук», под которыми он понимает и собственно математику, и физику, и астрономию.

Рассмотрим основные достижения механики Возрождения (в современном ее понимании), в формирование которой внесли свой вклад такие крупнейшие ученые, как Николай Кузанский, Леонардо да Винчи, Стевин, Коперник, Тарталья, Бенедетти, Кардано, Кеплер и др.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

2. Квантовая механика

Из книги автора

2. Квантовая механика Очень трудно даже совершенно поверхностно излагать квантовую механику, не пользуясь математическим формализмом, потому что можно сказать, сущность этой новой механики заключается именно в ее формализме. Тем не менее мы попытаемся дать читателю


Относительность и механика

Из книги автора

Относительность и механика Теория относительности с необходимостью возникает из серьезных и глубоких противоречий в старой теории, из которых, казалось, не было выхода. Сила новой теории заключается в согласованности и простоте, с которой она разрешает все эти


I. АНТИЧНАЯ МЕХАНИКА

Из книги автора

I. АНТИЧНАЯ МЕХАНИКА Началом расцвета механики как науки можно считать XVII век — век бурного развития математического естествознания. Именно тогда сформировались основные законы классической механики. Однако зарождение механических знаний относится к глубокой


VII. МЕХАНИКА В XIX ВЕКЕ

Из книги автора

VII. МЕХАНИКА В XIX ВЕКЕ РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В


МЕХАНИКА ГЕРЦА

Из книги автора

МЕХАНИКА ГЕРЦА В XVII в. трудами Галилея и Ньютона были заложены принципиальные основы классической механики.В XVIII и XIX вв. Эйлер, Даламбер, Лагранж, Гамильтон, Якоби, Остроградский, исходя из этих основ, построили великолепное здание аналитической механики и разработали ее


МЕХАНИКА В ВЫСШЕЙ ШКОЛЕ

Из книги автора

МЕХАНИКА В ВЫСШЕЙ ШКОЛЕ С 30-х годов XIX в. начал быстро повышаться уровень преподавания механики в Московском университете, стала вестись исследовательская работа. В Петербургском университете курс механики с 1819 по 1846 г. читал профессор Д.С. Чижов (1785—1853), лекции которого


НЕЕВКЛИДОВА МЕХАНИКА

Из книги автора

НЕЕВКЛИДОВА МЕХАНИКА Неевклидова механика, т. е. классическая механика в неевклидовом пространстве, и прежде всего в пространстве Лобачевского, возникла в конце 60-х годов XIX в., когда идеи Лобачевского начали получать признание математиков.Основным стимулом развития


Глава 6 Начало квантовой эпохи

Из книги автора

Глава 6 Начало квантовой эпохи Профессор, не желавший делать открытия Следующим после Максвелла, кто изобрел новое фундаментальное понятие, стал человек, этого не желавший и для этого малоподходящий, — 42-летний германский профессор Макс Карл Эрнст Людвиг Планк. Он вырос


Механика Ньютона

Из книги автора

Механика Ньютона Теория тяготения Ньютона без использования его законов механики не была бы создана. Опуская детали, которые можно найти и в школьном учебнике физики, приведем эти три основных закона в окончательном виде. Без всякого сомнения, они имеют фундаментальное


Наброски к портрету на фоне эпохи

Из книги автора

Наброски к портрету на фоне эпохи Артемий Исаакович Алиханян был одним из основателей ядерной физики и физики элементарных частиц в Советском Союзе. Он одним из первых понял, что для развития физики частиц или, говоря языком того времени, для выяснения природы ядерных