СВОЕНРАВНЫЙ ДЕМОН

В отличие от социальной статистики, которая как бы ограничивала свободную волю людей на уровне отдельных личностей, сформулированный Клаузиусом второй закон термодинамики вводил в мир детерминизм гораздо более глубоким и серьезным образом. Еще в 1850-х годах Уильям Томсон и Герман фон Гельмгольц показали, что постоянный рост энтропии — потока тепла от горячих тел к холодным — должен привести к так называемой тепловой смерти Вселенной. Этим специальным термином физики стали обозначать то предельное состояние, к которому должен прийти мир после того, как в нем завершатся все возможные процессы теплопереноса, энтропия возрастет до своего предельного значения и установится некая единая, средняя прохладная температура, в результате чего исчезнут все мыслимые для жизни условия. «Воистину, история мира завершится не громом, а всхлипом», — писал поэт Т.С. Элиот. Второй закон утверждает, что вплоть до этого печального конца в мире должны осуществляться процессы, протекающие в определенном направлении, а именно процессы, увеличивающие его энтропию. Следует ли из того, что мячик всегда будет скатываться вниз по склону, что и люди, состоящие из мириадов танцующих атомов, обречены поступать таким же образом? Наличие свободной воли подразумевает, что мы можем»управлять событиями, а второй закон термодинамики утверждает, что из любых событий происходят только те, которые разрешены.

Максвелл относился к законам Ньютона не менее уважительно, чем Лаплас, но в отличие от последнего испытывал сильную нужду в гипотезе существования Бога. Будучи благочестивым христианином, он не мог принять мир, в котором Бог лишил бы человека свободы воли, но основная проблема представлялась ему столь же очевидной — каким образом свободная воля человека может осуществляться без явного нарушения законов термодинамики?

Альфред Теннисон спасался от фатализма в поэтических фантазиях, непозволительных ученым. В этой связи Максвелл упоминал стихи, в которых великий поэт мечтал:

Увидеть вспышки атомных потоков И вихри миллионов новых вселенных,

Бегущих по бессмысленным безграничностям мира, Сталкивающихся друг с другом и непрерывно Созидающих все новые и новые структуры.

Вечно

Цитируя это стихотворение, Максвелл отмечал, что Теннисон «пытается разорвать узы фатума, заставляя атомы отклоняться и сталкиваться неожиданным образом, что придает им подобие иррациональной свободы воли»59.

Позиция самого Максвелла выглядит гораздо сложнее. Он понимал, что Второй закон является статистическим, т.е. «законом больших чисел», но в 1867 году он сумел, по собственному образному выражению, «проделать щель» в этом утверждении космического масштаба и придумать для него новую интерпретацию. Максвелл заявил, что статистическая неопределенность возникает просто вследствие недостаточности знаний об изучаемых объектах. Мы действительно не можем проследить и описать движение всех атомов даже в очень небольшом образце вещества, однако наше незнание носит лишь относительный характер, поскольку расчет движения всех атомов остается возможным в принципе. Представьте себе, писал по этому поводу Максвелл, некое «разумное существо»60 столь малых размеров, что оно способно следить за движением отдельных атомов. Пользуясь своими сверхъестественными вычислительными способностями, такое существо могло бы обойти действие Второго закона, просто отбирая некоторые из пролетающих частиц по собственному желанию, т.е. по свободной воле.

Представим себе заполненный газом сосуд, разделенный на два отделения стенкой, в которой имеется небольшая дверца. Описанное существо, наблюдая за движением частиц газа, может открывать дверцу только перед частицами, летящими в одном направлении. Такие действия с течением времени неизбежно приведут к тому, что все атомы соберутся в одном отделении сосуда, давление в котором повысится. Такая эволюция газовой системы, конечно, противоречит Второму закону, так как конечное состояние гораздо менее вероятно, чем исходное. Если кто-то проделает хотя бы крошечное отверстие в разделительной стенке, то газ вновь равномерно распределится по всему объему, создавая одинаковое давление, это состояние и является наиболее вероятным.

Уильям Томсон дал выдуманному Максвеллом существу прозвище «демон», возможно, из-за того, что относился к нему неодобрительно[26]. Несмотря на большой успех предложенной интерпретации, самому Максвеллу наличие демона казалось недостаточным обоснованием концепции свободной воли, и поэтому он в течение 1870-х годов пытался найти и другие «щели» в физических законах, которые позволили бы оправдать существование свободной воли без нарушения закона сохранения энергии — первого закона термодинамики. Однако его усилия оказались тщетными. Более того, еще через десятки лет, когда инженеру-связисту Клоду Шеннону удалось объединить термодинамику с теорией информации, в концепции Максвелла обнаружилось существенное упущение. Дело в том, что производство энтропии связано с информацией, так что демон Максвелла не мог бы действовать по описанному методу. Оказалось, что информация, необходимая для расчета траектории и соответственно для принятия решении об открывании дверцы, повышает энтропию системы по крайней мере на ту же величину, которая «выигрывается» открыванием дверцы. Таким образом, как сказали бы медики, даже демон Максвелла не обладает иммунитетом против Второго закона.

Очень часто можно встретить утверждение, что квантовая механика разрушила детерминированный мир механики Ньютона и внесла представление о вероятности и неопределенности в самое сердце материи. Но при этом необходимо помнить, что существует огромная разница между практической неопределенностью, относящейся к движению частиц в статистической механике, созданной Максвеллом и Больцманом, и принципиальной неопределенностью, задаваемой волновой механикой Эрвина Шредингера и особенно принципом неопределенности Вернера Гейзенберга (1927). Квантово-механическая теория говорит, что есть некоторые вещи, которые мы не только не знаем, но и не можем знать в принципе.

Стоит, однако, отметить, что создание вероятностной квантовой механики стало возможно лишь после внедрения статистики в классическую физику

   XIX века. В 1918 году польский физик Мариан Смолуховский предложил считать вероятность центральным объектом изучения современной физики: «В настоящее время тенденция к использованию статистических методов не коснулась лишь нескольких разделов физики — уравнений Лоренца, электронной теории, закона сохранения энергии и принципа относительности, но весьма вероятно, что в будущем даже самые точные законы будут заменены статистическими закономерностями»61.

Развитие статистической физики наверняка было бы значительно более тернистым, если бы социальные статистики не придали ученым веру в то, что крупномасштабный порядок и закономерности могут возникать в мире беспорядка, где причины каждого отдельного события неизвестны или непонятны. В природе много таких событий и систем, и в этих ситуациях мы должны верить в законы, существующие в мире больших чисел.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК