КРИВАЯ ОШИБОК

Наиболее выдающимся астрономом Франции этой эпохи являлся великий математик Пьер-Симон Лаплас (1749-1827), которому удалось значительно обогатить небесную механику Ньютона и выявить новые важные аспекты планетарного движения. Он и его сотрудники, разумеется, давно выяснили, что результаты астрономических наблюдений очень редко точно совпадают с результатами математических расчетов, осуществляемых в соответствии с абсолютно точными законами Ньютона. Практически все измерения всегда содержали хотя бы небольшие ошибки, приводящие к отклонениям от расчетных величин.

Французские астрономы развили методы, позволяющие оценивать эти ошибки, и нашли непрерывные кривые, хорошо описывающие рассеяние или отклонение получаемых данных. Лаплас и его ученик Симеон-Дени Пуассон (1781-1840) предположили, что ошибки измерений носят чисто случайный характер и могут принимать любые значения, но с разными вероятностями. При этом вероятность возникновения ошибки, т. е. отклонения результата измерения определенной величины от ее математического значения, задаваемого «точным законом», уменьшается с ростом величины отклонения, так что очень большие отклонения маловероятны. Смысл этого утверждения очень прост, так как, даже измеряя длину ступни линейкой, читатель скорее всего ошибется на миллиметр, а не на сантиметр. Обычно значение ошибки не повторяется при последовательных измерениях, даже при использовании одинаковых инструментов и методов. Действительно, замеряя линейкой длину ступни членов своей семьи, читатель будет иногда ошибаться на полмиллиметра, а иногда даже на два. Многое при этом зависит не только от точности линейки, но и от вашей аккуратности при каждом измерении. Ошибки — во многом дело случая, это и связывает величину ошибки с теорией вероятностей.

Рис. 3.2. Нормальное распределение или кривая ошибок. Колоколообразная кривая описывает статистику любых случайных процессов. Более строго математики предпочитают называть такие процессы стохастическими, подразумевая, что все измерения или наблюдения не зависят друг от друга.

Для того чтобы оценить вероятность появления некоторой ошибки, мы должны прежде всего выяснить, сколь часто она проявляется при достаточно большой и репрезентативной серии измерений, т.е. собрать статистические данные о проявлении отклонений данной величины. Французские ученые обнаружили, что значения ошибок всегда распределяются одинаково. При этом незначительные отклонения не только всегда наблюдались чаще, чем очень большие, но и само падение количества определенных отклонений с ростом их величины было вполне предсказуемым. Статистические данные по измерению какой-либо величины х всегда аккуратно ложились на кривую совершенно определенного типа, получившую название кривой ошибок (рис. 3.2). Ввиду широчайшего распространения кривых такого рода, возникающих при описании самых разных процессов, эту функцию, график которой напоминает по форме колокол, называют также нормальным распределением и распределением Гаусса в честь великого немецкого физика и математика Карла Фридриха Гаусса (1777-1855), проанализировавшего ее свойства в 1807 году. Поэтому, когда данные измерений ложатся на эту кривую, физики иногда просто говорят о наличии гауссовской статистики. Все эти названия относятся к одной и той же замечательной кривой, описывающей распределение вероятностей для измерений при любом случайном процессе.

Стоит отметить, что математики, занимавшиеся теорией вероятностей, уже давно знали о нормальном распределении, так как еще в 1733 году Абрахам де Муавр показал, что оно описывает распределение отклонений от среднего при известной игре с бросанием монеты (орел или решка). Считается, что в этой игре шансы выпадения орла и решки одинаковы (разумеется, мы говорим лишь о честной игре), однако каждый знает, что в реальной игре число последовательных выпадений орлов и решек может меняться причудливым образом, а равенство вероятностей проявляется лишь при довольно большом числе подбрасываний.

Нас не должен удивлять факт, что результат большой серии случайных событий является предсказуемым, поскольку он просто отражает равную вероятность отклонений в обе стороны. Выпадение нескольких решек подряд позднее как-то компенсируется последовательным выпадений орлов, а среднее соотношение при большом числе бросков остается 50:50. В начале

   XVIII века Якоб Бернулли, дядя упоминавшегося ранее Даниила Бернулли, указывал, что, поскольку результат события строго определен соотношением вероятностей (в нашей задаче 1:1), распределение реальных событий будет подчиняться этому соотношению при достаточно большом числе испытаний. Пуассон обогатил эту идею в 1835 году прекрасным названием «закон больших чисел», наглядно демонстрирующим, что чистая случайность отдельных событий статистически приводит к детерминированному результату при достаточно большом числе таких случайных событий. Оказалось, что случайности сами по себе не мешают событиям протекать предсказуемым образом.

Понятно, что соотношение 50:50 не гарантируется, т. е. наблюдается не всегда. В серии из 10 бросков нас нисколько не удивит выпадение 4 орлов и 6 решек с большим отклонением (20%) от ожидаемого среднего. При сотне бросков мы можем получить 49 орлов и 51 решку с той же разницей в 2 единицы, которые, однако, будут соответствовать уже 2% отклонения от среднего. В следующей серии из 100 бросков могут выпасть 52 орла и 48 решек, и т.д. Де Муавр показал, что при очень большом количестве серий с достаточно большим числом бросков получаемые нами результаты будут всегда прекрасно укладываться на кривую нормального распределение

Естественно, возникло желание описать форму кривой математическим уравнением и получить возможность предсказывать вероятность определенных результатов в серии бросков. Расчет оказался совсем не тривиальной задачей для математиков XVIII века и потребовал очень сложных вычислений, учитывая неразвитую технику того времени. Однако в конце концов Муавр сумел аппроксимировать кривую достаточно простым математическим уравнением, позволяющим производить расчеты с высокой точностью.

Мы можем рассматривать отклонения от соотношения 50:50 при бросании монет в качестве ошибок, сдвигающих «результаты измерения» в сторону от «истинного» значения. Это может показаться каким-то извращением или обманом, поскольку ранее уже было заявлено, что броски совершаются совершенно честно, так что речь может идти не об ошибке, а о какой-то непонятной случайности. Однако в 1770-х годах Лаплас осознал, что ошибки измерений также являются результатом действия не поддающихся расчету (или слишком сложных для количественной оценки) факторов, вызывающих случайные отклонения от истинных значений. После этого Лаплас и другие астрономы стали пользоваться приближенной формулой Муавра для оценки ошибок в своих астрономических измерениях.

В начале XIX столетия французский математик Жозеф Фурье (1768— 1830) также начал широко применять в расчетах нормальное распределение. Будучи директором Бюро департамента статистики, он опубликовал несколько статей по вопросам демографической статистики, способствуя знакомству научной общественности с этой кривой. Лаплас также пытался применить уравнение Муавра в задачах, связанных с социальной статистикой. В 1781 году он показал, что примерное равенство числа рождений мальчиков и девочек в Париже, что традиционно считалось свидетельством божественного Провидения, представляет собой просто следствие уравнения Муавра для случайного процесса с двумя равновероятными исходами, а отклонения от него прекрасно укладываются на кривую ошибок.

Ознакомившись с работами Лапласа, Кетле был настолько поражен ролью нормального распределения, что даже стал считать, что именно оно является фундаментальным уравнением, описывающим любые демографические процессы. В 1844 году ему удалось продемонстрировать, что статистические данные о параметрах сложения человека — высоте и обхвату — также отлично укладываются на «горб» нормального распределения, что казалось ему проявлением порядка и закономерности в природе вообще. В качестве еще одного примера предлагаю читателю посмотреть на толпу пешеходов на какой-нибудь оживленной городской улице. На первый взгляд покажется, что во внешних габаритах людей на улице нет и не может быть никакой упорядоченности (понятно, в разумных пределах), однако читатель может быть уверен, что, собрав статистические данные относительно сложения, веса и т. п. всей этой массы прохожих, он получит данные, которые прекрасно согласуются с описанным колоколообразным распределением.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК