РИСК И СЛУЧАЙНОСТЬ
В следующей модели дорожного движения, предложенной Нагелем и Майей Пажуски в 1995 году, значение скорости, выбранное каждым водителем, продолжает затем по возможности сохраняться неизменным, что несколько напоминает систему автоматического управления скоростью (cruise-control), применяемой в некоторых автомобилях. В этих условиях процесс перехода от свободного потока к тесному как бы откладывается или даже отменяется, и после достижения критической плотности поток остается свободным, а его величина увеличивается с ростом плотности, как и раньше (рис. 7.1). Ситуация вновь выглядит так, как если бы все водители вдруг «сговорились» вести себя определенным образом, т. е. коллективно решили смириться с некоторым риском поддержания их скорости, несмотря на увеличившуюся плотность движения.
Критическая Плотность
Рис. 7.1. Зависимость величины транспортного потока от его плотности. Выделяется точка перехода от свободного потока к тесному, цосле которой повышение плотности сопровождается снижением величины потока, так как в этом режиме водители вынуждены уменьшать скорость. Выше критической точки существует также режим метастабильного «свободного» потока, показанный пунктирной линией.
Как видно из рисунка, в модели с контролем скорости критическая плотность выступает в качестве точки бифуркации, в которой становятся возможными два режима. Один из них выглядит более безопасным — все водители сбрасывают скорость, а второй несколько напоминает азартную игру, при которой все водители несутся, как прежде. До того момента, пока у кого-то из участников этой игры не сдадут нервы или не ослабнет концентрация внимания, рискованный режим позволяет обеспечить очень высокую скорость движения без столкновений. Однако это очень опасное и рискованное предприятие. Стоит хотя бы одному участнику гонки притормозить, как вынужден будет тормозить едущий следом, второй, третий, и вот в мгновение ока весь этот высокоскоростной транспортный поток превратится в тесно утрамбованное, вяло ползущее скопище. Разумеется, сохраняющие высокую скорость водители не знают, какому риску они подвергаются, точно так же как отдельные молекулы не знают, где они находятся, в газе или жидкости. Высокоскоростной режим представляется вполне осуществимым коллективным состоянием даже при плотности потока, превышающей критическую.
Возникшее при этом состояние является настолько хрупким, что оно может разрушиться при малейшем «провокационном» воздействии. Любая случайная флуктуация может мгновенно инициировать Великий А-Бумм т. е. перевести поток в другое, «тесное» состояние. Иными словами, описываемый нами режим не стабилен, и физики, которые постоянно сталкиваются с такими состояниями, присвоили им название метастабильных. Метастабильность вовсе не эквивалентна нестабильности, это состояние может длиться довольно долго, даже сколь угодно долго, если никто не примется вдруг «раскачивать лодку».
Газы, жидкости и твердые вещества также могут существовать в метастабильных состояниях, в условиях, когда более стабильным является другое состояние. Физики очень часто получают так называемые переохлажденные жидкости, охлаждая жидкости до температур ниже точки замерзания, прр определенных условиях жидкость может миновать эту точку, «не заметив» ее. Существование таких переохлажденных жидкостей объясняется тем что процесс замерзания должен где-то начаться. Вода не замерзает cpa3j по всему объему, сначала образуются несколько крошечных кристалликоі льда, которые потом разрастаются, захватывая весь объем жидкости. Обычнс такие «зародыши» кристаллизации образуются на самых разнообразные неоднородностях в системе, например, пылинках в жидкости или микроца рапйнах на поверхности сосуда, наличие которых облегчает объединенш молекул воды в ледяные кристаллики. Поэтому в тщательно очищенноі от любых примесей воде, в отсутствие центров «нуклеации», как говоря' физики, кристаллизация может произойти только в том случае, если бес порядочно движущиеся молекулы воды случайно соберутся в структур) подобную льду. Иными словами, некая случайная флуктуация должн; вызвать фазовый переход.
В принципе такое становится возможным, как только температура воды снижается ниже температуры замерзания. Но на практике это может не происходить еще очень долго, хотя вероятность процесса быстро возрастает с падением температуры. Рекорд охлаждения воды без ее замерзания составляет около -39 °С. Спуститься ниже не удается, несмотря на все ухищрения экспериментаторов.
Сравнивая явление кристаллизации с поведением футбольных болельщиков на стадионе, нельзя не отметить явную аналогию. Есть метастабшіьная, беспорядочно орущая толпа и есть мелкие группы фанатов, скандирующие в унисон. Когда размер активной группы превышает некоторое критическое значение, лозунг или песня вдруг захватывает всех болельщиков, и весь стадион превращается в слаженный хор, в единый организм.
Процесс заставляет нас вновь вспомнить о фантастическом описании мгновенного замерзания Мирового океана в романе Курта Воннегута Колыбель для кошки, с отрывка из которого начиналась гл. 4. Термодинамически этот процесс означает, что вода является метастабильным состоянием по сравнению с гипотетической формой льда, и при внесении «затравки» она мгновенно замерзает в «теплый лед». Согласно этой картине, Мировой океан только и ждет, чтобы замерзнуть, но, несмотря на его гигантские размеры, образование льда-9 вследствие случайной флуктуации является практически невозможным, и лишь внешнее воздействие способно вызвать фазовый переход. В связи с этим можно вспомнить, что в конце 1960-х годов группа российских ученых сообщила об открытии нового, желеобразного состояния воды, которое якобы было более стабильным, чем обычная вода, при нормальных температуре и давлении. Некоторые специалисты даже обеспокоились возможностью попадания такой «поливоды» в Мировой океан, опасаясь, что она может стать инициатором превращения морской воды в желеобразную массу. К счастью, позднее выяснилось, что все это было плодом воображения, если не розыгрышем нескольких экспериментаторов.
Для дальнейшего рассмотрения проблемы метастабильности нам понадобятся некоторые технические пояснения. Ранее уже отмечалось, что фазовые превращения достаточно четко разделяются на два класса, условно называемые переходами первого и второго рода. К первым относятся, например, замерзание, кипение и другие привычные процессы, ко вторым — изменение магнитных свойств в точке Кюри, разделение флюида на жидкость и газ при его охлаждении ниже критической точки и т. п. Исследования показали, что метастабильные состояния могут проявляться лишь при фазовых переходах первого рода, когда система может некоторое время как бы «игнорировать призывы» к превращению, в то время как переходы второго рода происходят сразу после того, как в критической точке происходит нечто, заставляющее систему существенно изменять свое поведение и состояние (об этом подробнее рассказывается в гл. 10).
Из этого вытекает, что изменение характера описываемых транспортны: потоков — переход от свободного потока к тесному в модели НаШ — можег быть отнесен к фазовым переходам первого рода. При этом мы должнь рассмотреть возникший в модели дополнительный режим, а именно — ме тастабильный свободный поток, соответствующий пунктирной линии н; рис. 7.1. Пусть интенсивность движения постепенно возрастает к час^ пик. При плотности потока выше критической сохраняется возможності существования режима метастабильного свободного потока, если кто-т< из нервных водителей не совершит ошибку или наезд, после чего систем; стремительно «разваливается» и скорость потока уменьшается почти до нуля.
Предположим, что после такого прискорбного происшествия интен сивность движения по каким-то объективным причинам, например, после окончания часа пик, снизилась, и рассмотрим, каким образом систем; возвращается в исходное состояние. Оказывается, система не может со вершить обратный переход в состояние свободного потока до тех пор, пок; плотность потока не станет ниже критического значения, потому что д< этого достигнутое тесное состояние является более стабильным (рис. 7.2) Другими словами, метастабильность — улица с односторонним движениел в том смысле, что система может перейти в метастабильный режим свобод ного потока лишь при повышении плотности потока от низких значений но никак не при его уменьшении от высоких. Еще нагляднее это свойство проявляется при фазовых переходах первого рода в физике: очень легко, например, получить воду, переохлажденную до —5 °С, но невозможно расплавить чистый лед при этой температуре с получением такой же переохлажденной воды.
Рис. 7.2. Если свободный поток существует в метастабильном режиме, то его пере ход в тесный поток осуществляется мгновенно вследствие случайных флуктуаций Обратный переход к режиму свободного потока оказывается возможным лишь прі уменьшении плотности движения до критического значения. В результате такоі смены режимов возникает сложная зависимость величины потока от плотности описываемая петлей, допускающей «движение» лишь в одном направлении.
Из сказанного вытекает один очень важный вывод: состояние системы определяется не только плотностью потока, но и историей возникновения системы, т. е. предыдущими изменениями ее плотности. При изменении плотности движения скорость движения меняется по сложной «петле», зависящей от предыдущей истории и позволяющей системе двигаться лишь в одном направлении во времени, как показано на рис. 7.2. Физики прекрасно знают подобные петли, а само это явление давно назвали гистерезисом.
Модель НаШ позволяет нам понять, каким образом дорожные пробки могут формироваться без очевидных причин. Рассмотрим движение непрерывного потока машин, движущихся в метастабильном режиме свободного потока. Движение осуществляется непрерывно и быстро лишь до тех пор, пока один из водителей по случайным причинам (на дорогу выбежала собака, зазвонил мобильный телефон и т.п.) не изменит скорость движения. Математическое моделирование этого процесса включает внезапное уменьшение скорости и последующее незамедлительное ускорение для восстановления первоначальной скорости. Все длится одно мгновение, но посмотрите, как это отражается на потоке машин (рис. 7.3).
Рис. 7.3. Возникновение дорожного затора в метастабильном транспортном токе из-за случайного происшествия. Представлены результаты моделироваі зависимости положений машин вдоль шоссе (ось х) от времени t. Прямые лин направленные снизу вверх с уклоном вправо, показывают траектории движения шин, движущихся по шоссе с постоянной скоростью. Каждой машине, въезжаюі на участок шоссе (нижняя линия на рисунке, х = 0), соответствует отдельная лин Темные линии, пересекающие рисунок и обозначающие участки затора или ос новки движения, имеют форму изломов вдоль оси времени. Отдельное нарушеі в верхнем левом углу рисунка, вызванное, например, неожиданным торможені одной машины, приводит к массовым нарушениям всего режима движения, причем масштаб возникающего тесного потока постепенно возрастает.
Каждая линия на рисунке в направлении от левого нижнего угла к правому верхнему соответствует траектории движения отдельного автомобиля. Прямые наклонные линии означают движение машины с постоянной скоростью. Автомобиль, виртуально находящийся в верхней левой части рисунка, легко и свободно может притормозить, а затем набрать прежнюю скорость, однако следующие за ним машины (им соответствуют линии справа) оказываются в менее выгодном положении, поскольку они вынуждены сбавлять скорость, чтобы избежать столкновения. По всему потоку автомобилей пробегает волна торможений в форме излома. В этот процесс вовлекается множество машин, включая те, которые появляются на шоссе гораздо позже первичных событий. Возникает дорожная пробка, масштабы которой на рисунке отображаются степенью затемнения поперечных линий.
Более того, из рисунка видно, что в отличие от режима свободного потока, при котором пробка остается на месте своего зарождения, в метастабильном потоке нарушение начинает перемещаться вправо с некоторым смещением вниз, т. е. распространяется в направлении, противоположном общему движению потока. Другими словами, возникающий в одной точке затор способен спонтанно перемещаться в другие точки. Еще удивительнее тот факт, что пробка может расщепляться на несколько раздельных ветвей, в результате чего едущие далеко позади водителй могут натыкаться на целую серию пробок. Возникающие в метастабильном потоке скопления машин не рассасываются, а продолжают существовать и распространяться внутри потока. Общий вывод состоит в том, что очень незначительное рушение скорости одним-единственным водителем может создать мощи распространяющиеся волны заторов, полностью перекрывающие движеі на огромных магистралях.
Предлагаемый сценарий событий представляется весьма правдопод ным. Но модель НаШ является слишком упрощенной и излишне чувсті тельной к малым нарушениям в потоке, чтобы адекватно описывать < явления. Прежде чем перейти к анализу других моделей, рассмотрим данр наблюдений за ситуациями на дороге.