НЕУСТОЙЧИВОЕ РАВНОВЕСИЕ
Теория ван дер Ваальса действительно не являлась полной, так как в ней не учитывалась особая роль флуктуаций в рассматриваемых процессах. Дело в том, что системы в критической точке попадают на «распутье», получая как бы некоторую свободу выбора, и именно в этой особенности заключена существенная разница между фазовыми переходами первого рода типа замерзания жидкости или плавления твердых тел и фазовыми переходами второго рода, или критическими превращениями, о которых говорилось ранее. Например, при понижении температуры ниже точки замерзания все молекулы или части жидкости «обречены» на превращение в твердое тело, а при критических переходах ситуация существенно меняется, и молекулы флюида[95] как бы сосуществуют в двух разных состояниях. Такая же ситуация наблюдается в магнитных системах ниже критической точки (температуры Кюри), когда магнитные моменты атомов в модели Изинга (см. гл. 5) могут быть ориентированы в одном из двух противоположных направлений. И ни одно из них не может быть названо предпочтительным. Читатель может представить себе мяч на вершине холма, который может скатиться вниз по одному из двух абсолютно одинаковых склонов в разные стороны. Этот принципиальный выбор одного из направлений движения системы может быть осуществлен только случайным образом, и роль этого случайного фактора играют внутренние флуктуации самой системы.
Теоретически флюид в сверхкритическом состоянии должен иметь однородную плотность по всему объему, но из-за флуктуаций, вызванных, например, случайным движением частиц, в этом пограничном состоянии могут возникать ничтожные отклонения от однородности, в результате чего локальная плотность в каких-то местах будет возрастать, а в других — уменьшаться, превращая эти микрообъемы (или по крайней мере способствуя их превращению) в жидкость или газ соответственно. Каждая из таких флуктуаций может рассматриваться в качестве фактора «самовозбуждения», что, кстати, очень заметно и на примере намагничивания систем, когда набор спинов определенной ориентации в каком-то домене влияет на спины атомов в ближайшем окружении.
Сказанное лишь иллюстрирует наблюдаемую на практике исключительную чувствительность описываемых систем к флуктуациям. Равновесие нарушается под воздействием микроскопических, случайных причин. Такие объекты становятся крайне «капризными» и почти непредсказуемыми, так что сохранение вещества в окрестности критической точки физики сравнивают с цирковыми представлениями, когда артисты подолгу удивляют публику, балансируя предметами на кончике шеста.
Сверхчувствительность к нарушениям выступает важнейшей особенностью систем в окрестности критической точки, вследствие чего ничтожные флуктуации в одной из частей системы моіуг вдруг приводить к существенным последствиям в других частях или даже к изменению системы в целом. Например, случайное изменение ориентации одного из спинов в магнитной системе может воздействовать на спин в удаленной части образца, удаленной настолько, что ни о каком прямом взаимодействии не может быть и речи. На языке статистической физики такие явления называются дальнодейст- вующей корреляцией. Степень корреляции определяется расстоянием, на котором частицы могут как-то влиять друг на друга, и эта величина служит еще одним характерным параметром, увеличивающимся до бесконечности вблизи критической точки.
Сверхчувствительность выступает в качестве коллективного свойства системы. Закладываемые в модели взаимодействия частиц являются обычно весьма короткодействующими, например, в модели Изинга влияние ограничивается ближайшими спинами, однако в критическом состоянии такие взаимодействия вдруг начинают передаваться от частицы к частице на очень большие расстояния, несмотря на тепловое движение, которое в обычных условиях быстро «гасит» такое взаимодействие. Каким-то образом в критическом состоянии все частицы обнаруживают способность к коллективному поведению.
Проблема заключается в том, что в таком состоянии каждая частица как бы «желает» подчинить своему поведению все остальные, в результате чего вся система вдруг распадается на участки с разным поведением, которые случайным образом пытаются воздействовать на свое окружение. Такие участки могут иметь самые разные размеры, от одной частицы до заметной части объема всей системы (как показано на рис. 10.1), в результате чего в системе пропадает, например, так называемый характерный размер доменов, все они вдруг начинают мгновенно возникать или исчезать, формируя разные структуры. Критическое состояние вдруг приобретает способность создавать собственный тип флуктуаций из обычного теплового шума[96], причем эти флуктуации являются безразмерными или безмасштпабными в том смысле, что им не соответствует никакой средний или характерный размер.
Рис. 10.1. В критической точке могут появляться флуктуации самых разных размеров. На рисунке представлены результаты компьютерного моделирования критического перехода в системе «жидкость—газ», где черные точки означают жидкое состояние, а белые — газообразное состояние вещества. Аналогично будет выглядеть картина намагничивания, если такими же точками обозначить участки с противоположной ориентацией спинов. Флуктуации могут охватывать как отдельные частицы, так и целые крупные участки системы, из-за чего для них не существует никакого характерного размера. Физики называют эти флуктуации безмасштпабными.
Именно благодаря последней особенности при критических переходах в жидкостях наблюдается упомянутая критическая опалесценция, когда жидкости вдруг приобретают молочно-дымчатую окраску. Механизм ее появления достаточно прост — в жидкой и газовой фазах флюида в окрестности критической точки возникают флуктуации самых разных размеров, в том числе и близкие по масштабам к длине волны видимого света (несколько сотен миллионных долей миллиметра[97]). Такие включения интенсивно рассеивают свет подобно микроскопическим шарикам масла в обычном молоке, в результате чего среда становится непрозрачной и приобретает необычную окраску (молочно-дымчатую, иногда с перламутровым оттенком).
Теория ван дер Ваальса не могла давать правильных значений критических показателей, так как она вообще не учитывала микроскопическую картину распределения флуктуаций в описываемом состоянии. Более того, в ней предполагалось, что критическое состояние одно и то же в любой точке вещества. Читатель легко поймет, в чем дело, рассматривая рис. 10.1 на некотором удалении, когда белые и черные точки начнут сливаться в единый серый фон. Точно так же в теории ван дер Ваальса частицы не чувствуют «белого» или «черного» цвета своих ближайших соседей, воспринимая лишь общую «серость», создаваемую всем окружением (именно в этом состоит смысл приближения среднего поля, о котором рассказывалось в предыдущей главе). Стоит подчеркнуть, что это вовсе не умаляет всех достоинств теории, ставшей в свое время замечательным достижением физики. Пользуясь теорией ван дер Ваальса, Пьер Вейс сумел не только описать поведение магнитных систем вблизи точки Кюри (см. гл. 4), но и предсказать некоторые особенности поведения критических показателей для перехода «жидкость—газ».
В той же гл. 4 было описано, как позднее Ларе Онсагер сумел преодолеть ограничения приближения среднего поля на основе более детального изучения двумерной модели Изинга и вычислить точные значения критических показателей. Впрочем, стоит еще раз отметить, что для точного вычисления показателей необходимо решить трехмерную задачу для модели Изинга, что пока считается невозможным.
Разумеется, теоретики нашли обходной путь и пытаются «подкрасться» к истинным значениям показателей, решая эту задачу не аналитически, а всего лишь приближенно, в рамках некоторых трехмерных ЗО-моделей Изинга (подход в целом получил у физиков название перенормировки). Один из таких методов был разработан впервые в 1960-х годах Кеннетом Вильсоном из Корнельского университета, за что он и получил Нобелевскую премию по физике в 1982 году. Перенормировка представляет собой математическую процедуру, позволяющую по-новому оценить критический переход за счет избирательного удаления некоторых тонких деталей. Читатель может представить этот подход как укрупнение рисунка 10.1, в результате которого исчезают мелкие детали, а остаются лишь крупные, небольшие же участки рисунка с мелкими флуктуациями превращаются в «серые» участки. Проводя такую операцию последовательно (т. е. увеличивая масштаб укрупнения), можно вычислить довольно точно значения критических показателей, и этот метод д ля трехмерной модели Изинга позволяет очень точно предсказывать экспериментально измеряемые параметры реальных флюидов.
С одной стороны, понятно, что любые варианты модели Изинга для флюидов (в виде плоских или объемных решеток) представляют собой лишь очень грубое описание состояния реальных флюидов, но с другой — эти модели позволяют точно вычислять важнейшие для процессов критические показатели. В этом противоречии вновь скрывается некая общая закономерность, которую можно назвать универсальностью: в случае критических переходов мелкие детали строения разных систем вдруг теряют значимость, а их поведение вблизи критической точки начинает определяться какими-то глобальными законами. При этом становится не важным даже химический состав изучаемых систем, в результате чего, например, жидкий азот, изо- пентан или магнитный металл ведут себя одинаковым образом. Собственно, даже «грубость» модели не имеет существенного значения. Важными оказываются лишь два момента: размерность системы (двумерная или трехмерная модельная решетка) и вид сил взаимодействия между частицами (близкодействующие или дальнодействующие). Этих двух характеристик достаточно, чтобы отнести изучаемую систему к одному из так называемых классов универсальности, каждый из членов которого характеризуется одним и тем же критическим показателем и одинаковым поведением в окрестности критической точки.