ПРАВЛЕНИЕ МЕНЬШИНСТВА

До сих пор мы говорили о действиях, в которых победа агентов обеспечивается тем, что они примыкают к большинству. Не только голосующие избиратели обычно надеются, что их партия наберет большинство голосов, но и потенциальные женихи и даже преступники стремятся согласовать свое поведение с господствующей в окружении тенденцией или «нормой», что наглядно доказывают описанные модели. Существует, однако, еще один, довольно многочисленный класс ситуаций, в которых люди стремятся поступать не так, как другие, т. е. стремятся примкнуть к меньшинству и чем меньше, тем лучше. Например, добираясь до работы, каждый из нас стремится выбрать наименее оживленный маршрут движения, чтобы избежать пробок на дороге. Намереваясь продать дом, мы предпочтем дождаться ситуации высокого спроса, когда продавцы, т. е. мы, находятся в меньшинстве по сравнению с покупателями.

Существует много других аналогичных ситуаций, для которых экономист Брайан Арчер из Института Санта-Фе (Нью-Мексико) разработал специальную концепцию проблемы меньшинства. Предложенная им задача вошла в социологию под шутливым названием «проблема Эль Фароль», смысл которого проясняется при постановке задачи, возникшей из простой потребности молодого ирландца Брайана Арчера весело провести свободный вечер. Дело в том, что рядом с Институтом Санта-Фе располагался уютный бар «Эль Фароль», где вечерами по четвергам оркестр играл ирландскую музыку, привлекавшую не только Арчера, но и многих других. Бар стал настолько популярным, что по четвергам в него было трудно попасть, в результате многие любители ирландских песен просто перестали туда заходить — музыка им нравилась, но никому не хотелось толкаться. Через некоторое время произошла ожидаемая обратная реакция, т. е. бар вновь стал менее посещаемым, вследствие чего любители этого музыкального жанра возобновили свои традиционные посещения по четвергам.

Именно в этом Брайан Арчер сумел угадать наличие некой социологической дилеммы, обусловленной тем, что каждый отдельный клиент бара постоянно решал проблему: стоит ли посещать бар в четверг, рискуя наткнуться на толпу любителей музыки, или лучше остаться дома? В любом случае такой выбор связан с присоединением к меньшинству: если в меньшинстве окажутся посетители бара, то они проведут хороший вечер, если в меньшинстве окажутся оставшиеся дома, то им тоже посчастливится хорошо отдохнуть, пока другие толкаются в переполненном баре. Из этих простых и даже чисто житейских соображений Арчер сумел сформулировать в 1994 году серьезную социологическую проблему «Эль Фароль», смысл которой сводится к нескольким ясным и практически важным вопросам: «Как будет меняться посещаемость такого бара во времени? Станет ли результатом такой посещаемости полное сворачивание вечеров ирландской музыки? Может ли посещаемость бара принять хаотический характер? Каким образом можно оценить численно грядущие события?»21

Как отмечал сам Арчер, особенность проблемы связана с тем, что в данной модели нет и речи о «правильных» или «рационально обоснованных» решениях, поскольку практически никто из взаимодействующих агентов не может определить, какое число посетителей все же решит посетить бар в данный четверг. Каждый вынужден принимать собственное решение, основываясь на смутных ожиданиях и интуитивных предположениях, так что выбор поведения фактически диктуется верой в наиболее вероятный выбор других людей.

Арчеру как экономисту такая ситуация была знакома, поскольку трейдерам на рынке тоже постоянно приходится принимать решения на основе веры или хотя бы надежды, что рынок будет вести себя определенным образом: все другие будут покупать (взгляд продавца-оптимиста) или все будут продавать (взгляд продавца-пессимиста). Эта мера в значительной мере основывается на собственных желаниях и на пренебрежении намерениями других людей, тогда как цена на рынке изменяется именно в результате коллективных действий всех участников рынка. Арчер отмечал, что традиционные теории приписывают трейдерам дедуктивный образ мышления, то, что они принимают решения на основе полной информации, тогда как в реальности информация всегда неполна. В этих условиях не qj- ществует правильного решения, кроме ретроспективного, от которого мало толку. Так что трейдеры вынуждены руководствоваться интуитивным или индуктивным подходом, основанным на субъективных представлениях и собственном опыте.

Арчер писал, что экономисты «должны обратить особое внимание на индуктивное принятие решений»22, и считал, что проблема «Эль Фароль» является очень удобной моделью для его изучения. Он предложил очень простое, идеализированное описание ситуации, введя широкий набор произвольных правил, которыми агенты (в данном случае посетители) пользуются для предсказания заполнения бара и принятия собственного решения на этот счет. Правила Арчера основаны на разных оценках данных о посещаемости бара в предыдущие дни, например, один агент может полагать, что «народу будет, как в прошлый раз», а другой — находить усредненное число посетителей за «четыре последних сборища» и т.д. Каждый агент может пользоваться несколькими методами предсказания, постепенно выбирая из них наиболее точный, на его, конечно, взгляд.

Арчер показал, что в такой модели показатели посещаемости бара постоянно флуктуируют, не образуя устойчивой картины, в результате чего бар иногда заполняется на 30%, а иногда — на 90%. При этом средняя посещаемость составляет около 60% с отклонениями в обе стороны, редко превышающими 20%. Другими словами, посещаемость бара при таком подходе никогда не становится постоянной и не имеет регулярных подъемов или падений, однако может быть охарактеризована строго определенным средним значением. Арчер сравнил это явление с лесом, высота которого остается постоянной, несмотря на то что деревья в нем постоянно возникают, растут и отмирают.

Откуда, однако, возникли эти 60%? Дело в том, что Арчер выбрал именно это значение в качестве оптимального уровня заполнения бара — при числе посетителей выше 60% агенты начинают считать, что бар переполнен и их решение прийти сюда было ошибкой. Таким образом, посетители неосознанно «находят» средний оптимальный уровень посещаемости, хотя ни одно из правил не гарантировало такой результат.

В 1997 физики Дамьен Шале и Йи-Ченг Джанг из университета в швейцарском городе Фрибург сформулировали проблему «Эль Фароль» в гораздо более точной математической форме, которая получила специальное название «игра меньшинства», в которой игрок побеждает, если в конце остается в меньшинстве. В исходной модели Арчера правила, которыми пользовались агенты при принятии решений, были достаточно произвольными, а в игре меньшинства они определены более строго и систематизированно. Каждый агент получает список взаимоисключающих решений (например, остаться дома — пойти в бар), принятых большинством на предыдущих раундах игры (под раундом можно понимать очередной вечер в баре). Запись решений может быть, очевидно, представлена в виде последовательности цифр в двоичной системе (0 и 1, как обычно принято в компьютерной логике) и подвергнута обработке программой ЭВМ для принятия агентом решения о поведении на следующий раунд. Если, например, три последних раунда посетители бара оказывались в меньшинстве, то агент может принять решение пойти в «Эль Фароль» на следующий вечер. Как и в модели Арчера, агенты могут выбирать различные стратегии поведения и вырабатывать на их основе наиболее рациональную.

Шале и Джанг обнаружили, что средняя посещаемость составила около 50%, т.е. половина посетителей шла в бар, а другая половина — оставалась дома (в этой модели обе возможности четко уравновешены, победа в игре меньшинства означает, что агент попадает в группу, составляющую менее 50%). На первый взгляд кажется, что агенты очень хорошо «организовались» и нашли лучшую стратегию. И хотя они не могут выработать коллективный план, «меньшинство» в результате становится настолько большим, насколько возможно, т.е. сравнивается, по сути, с «большинством». Но насколько «эффективна» игра на самом деле? Показатели посещаемости бара вновь флуктуируют относительно среднего значения, как показано на рис. 13.9, а, причем каждое отклонение означает, что какое-то число агентов могло бы оказаться в этом случае «победителями» (то есть оказаться в числе меньшинства). Чем больше величина флуктуаций, тем «менее эффективной» является игра для ее участников.

Рис. 13.9. В игре меньшинства доля агентов, принимающих взаимоисключающие решения (в данном случае решение посетить бар «Эль Фароль» или остаться дома), флуктуирует относительно среднего значения в 50% (а). В идеальной модели доля выигравшего меньшинства возрастает до максимально возможного значения (т. е. приближается к 50%), однако наличие флуктуаций часто уменьшает эту долю, в результате чего сама игра в целом становится менее «эффективной». Со временем размер флуктуаций уменьшается (по мере улучшения стратегии агентов), и эффективность постепенно увеличивается, что несколько напоминает процессы эволюционного развития (б).

Затем было обнаружено, что флуктуации уменьшаются по мере того, как участники игры учитывают в своих расчетах все большее число предыдущих раундов игры. Этот факт можно рассматривать как следствие усиления памяти агентов или повышения их опытности. По мере уменьшения размаха флуктуаций эффективность игры увеличивается, что напоминает дарвиновский механизм развития, когда более удачливые участники игры постепенно вытесняют менее удачливых и приспособленных, из кого, естественно, к концу игры и состоит проигравшее большинство (рис. 13.9, б). В такой биологической трактовке можно даже считать, что популяция агентов (в качестве единого целого) «повышает» свой класс игры.

И фа меньшинства обладает, разумеется, лишь очень поверхностным сходством с экономическим рынком, так что ее следует рассматривать скорее в качестве метафоры, а не рабочей модели. Вспомним, например, что в реальной жизни многие торговцы часто стремятся примкнуть к большинству (хотя бы в результате стадного поведения, о чем рассказывалось в гл. 9). С другой стороны, в игре меньшинства отчетливо проявляются некоторые характерные особенности настоящего рынка — острая конкуренция, «эгоистичность», эмпирическая оценка ситуации, использование нескольких разных стратегий и необходимость выбора на основе недостаточной информации, что и делает эту игру важным инструментом изучения экономических явлений. В дальнейшем Шале и Джанг значительно модифицировали свою модель, приблизив ее условия к параметрам реального рынка, что позволило им изучить некоторые очень интересные и специфические ситуации, возникающие в рыночных отношениях. Например, они смогли смоделировать поведение так называемых шумовых трейдеров (принимающих решения на основе малейших колебаний биржевого курса) и инсайдеров (лиц, владеющих внутренней, закрытой для других информацией). Модель выявила, что обладание дополнительной «полезной информацией» (например, засекреченной от общественности) позволяет таким агентам сразу стать победителями в игре.

Очень интересным открытием для социальной физики стало то, что в ходе такого моделирования часть агентов, которые фактически представляют собой модельные автоматы, вдруг стала проявлять удивительно «человеческое» поведение. В гл. 6 уже описывалось, что при моделировании панического поведения толпы некоторые агенты вдруг действительно начинают вести себя подобно настоящим паникерам, когда пытаются выбраться, например, через узкие проходы и т. п. Израильские социологи Шахар Ход и Эхуд Накар, работая с модифицированной моделью Шале и Джанга, выяснили, что в некоторых обстоятельствах агенты при игре меньшинства начинают проявлять нерешительность, которая тоже всегда считалась присущей только живым существам. Эта особенность вдруг обнаружилась у агентов, которым была предоставлена возможность менять стратегию, оценивая прошлое поведение за счет введения коэффициента вероятности от 1 (полный и точный учет прошлого поведения) до 0 (когда агент полностью пренебрегает прошлым опытом). Таким образом, в личной стратегии агента учитывались и вероятности прошлых раундов игры, так что после каждого этапа все агенты получают дополнительный опыт, позволяющий затем повышать или уменьшать шансы[124].

При игре меньшинства в обычной форме описанная процедура часто приводит к весьма заметным изменениям в стратегии, в результате чего агенты разбиваются в конце игры на две весьма различные группы, одна из которых в своей стратегии почти целиком руководствуется прошлым опытом, а вторая практически не учитывает его. Другими словами, возникают две формы поведения, которые можно охарактеризовать лозунгами «Действуй строго по расчету!» и «Всегда поступай наперекор любым инструкциям!».

Однако Ходу и Накару удалось при моделировании обнаружить довольно интересный факт, что эта ситуация резко изменяется, как только в программу дополнительно вводится несимметричная оценка правильных и неправильных решений, т. е. агенты сильнее штрафуются при проигрыше (напомним, что проигрыш в описываемой игре означает попадание в большинство), чем премируются при выигрыше. Примерно такая же ситуация возникает у человека, который выбрал неправильный маршрут при поездке на работу, надеясь выиграть нескольких лишних минут, и в результате потерял целый час, что может означать опоздание на очень важную встречу и другие крупные неприятности, несоизмеримые с ожидавшимся выигрышем. В качестве другого примера можно указать биржевую игру на застойном рынке, когда трейдер теряет на неудачной сделке больше, чем зарабатывает при удачной.

Ход и Накар своими модельными экспериментами продемонстрировали, что в ситуациях, когда результат действий становится явно неэквивалентным или несимметричным, наиболее выгодными вариантами стратегии становятся ожидание и осторожность. Неожиданным результатом оказалось то, что модельные агенты вдруг стали очень нерешительными, т. е. перестали использовать крайние оценки вероятностей (0 или 1), а начали выискивать промежуточные. Агенты, продолжавшие придерживаться энергичных и экстремальных оценок, быстро оказались в проигрыше.

При такой неэквивалентности оценки результатов осторожность и стадность поведения во многих ситуациях оказываются наилучшей стратегией для индивида — отдельного агента, но для популяции в целом такое поведение не эффективно — среднее количество победителей при этом уменьшается. Это означает, например, что среднее число посетителей бара «Эль Фароль» всегда будет ниже оптимального. Попытки принимать индивидуальные решения с учетом возможного поведения других агентов оказываются менее эффективными, чем случайный выбор, что снижает групповую эффективность.

Игра меньшинства психологически выглядит наивной, так как основывается даже не на психологии отдельного человека или агента, а на грубой оценке ситуации, исходя из собственного опыта. Однако поведение возникающей при этом группы отличается особыми, очень сложными и необычными характеристиками, которые часто нельзя предсказать. Нам не следует обольщаться и думать, что эти особенности действительно соответствуют процессам принятия коллективных решений, поскольку мы пока не в состоянии оценить основной смысл результатов, получаемых в описываемых моделях. Главная проблема состоит в нашей неспособности понять сложные психологические мотивы групповых действий, так как мы не знаем, какая степень сложности может возникнуть из индивидуальных психологических мотивов, закладываемых даже в простейшие модели и процессы. В том, как мы делаем свой выбор, еще мало ясного.