ФОРМА ИЗМЕНЕНИЯ
Начиная с середины 1960-х годов теория устойчивых по Леви рыночных флуктуаций постепенно приобретала популярность даже у академических экономистов. Но экономисты-практики — собственно трейдеры и их советники, пытавшиеся применить новые экономические модели для реальных предсказаний поведения рынка, продолжали верить в гауссовские формы распределения. Частично это можно объяснить присущей им практичностью: чисто гауссовский шум интуитивно понятен большинству и его роль легко поддается учету в математическом моделировании, в то время как полеты Леви обсчитываются гораздо сложнее. Эти доморощенные экономисты были убеждены, что тонкая природа флуктуаций слабо влияет на их расчеты.
В действительности даже учет полетов Леви дает лишь приблизительную картину реальных флуктуаций рыночных цен. В 1995 году физики Розарио Мантенья и Джен Стэнли из университета в Бостоне проанализировали более миллиона записей стандартных рыночных и биржевых индексов, используя базы экономических данных за пять лет работы рынка, но так и не получили точной формы статистического распределения. Они рассматривали статистику отклонений[82] — разности цен акций через строго заданные интервалы времени: неделю, сутки, час, минуту. Такие отклонения служат показателем флуктуаций рыночных цен, при неизменности этого показателя возможная прибыль (вот тут прибыль! — Г. Э.) равна нулю. В частности, Мантенья и Стэнли изучали колебания известного индекса цен S&P 500 (Standard & Poor 500 market index), о котором уже говорилось. Это индекс соответствует рыночной капитализации активов пятисот ведущих американских компаний, отобранных на основе суммарной стоимости их акций, степени ликвидности и представительности различных отраслей промышленности. Этот индекс обычно рассматривается аналитиками и специалистами как суммарный показатель состояния экономики США.
Некоторые из полученных Мантенья и Стэнли результатов, приведенные на рис. 8.3, безусловно, свидетельствуют о том, что эти флуктуации не могут быть описаны моделью случайных блужданий. Малые флуктуации соответствуют распределению вероятностей для устойчивых по Леви процессов, однако распределение более крупных демонстрирует какое-то промежуточное состояние между процессами Гаусса и Леви. Другими словами, в модели Башелье недооцениваются частота и роль крупных флуктуаций, а в модели Мандельброта с «толстыми хвостами» распределений их частота переоценивается. Исследователи стали искать в статистике устойчивых по Леви процессов закономерности перехода от малых флуктуаций к большим.
Неожиданно, оказалось, что распределения флуктуаций рыночных показателей оказываются чрезвычайно похожими при самых разных временных интервалах между измерениями. Мантенья и Стэнли обнаружили, что распределения колебаний, измеренных с интервалами в минуту, день или неделю, почти совпадают друг с другом, т. е. поведение рынка остается неизменным при «увеличении» масштаба (разумеется, до определенных пределов, о чем будет рассказано далее). Этот довольно удивительный факт свидетельствует о том, что флуктуации рыночных и биржевых цен в каком-то смысле вообще не зависят от масштаба, что противоречит всем представлениям, лежащим в основе теории гауссовских флуктуаций. Увеличив часть кривой на рис. 8.2, а, мы вновь получаем те же колебания, которые характеризовали исходную кривую. Изменяя временной масштаб измерений, мы будем вновь и вновь получать одинаковые изломанные линии[83].
Наблюдаемое сходство форм распределений для разных уровней наблюдения является наиболее характерной особенностью так называемых фрактальных структур, которые упоминались в гл. 5. К этим структурам могут быть отнесены очень многие природные объекты, в терминах фрактальной геометрии описываются, например, конфигурации горных хребтов или береговых линий. Мандельброт не только ввел фракталы в научный обиход, но и первым обнаружил их присутствие во взлетах и падениях рыночных цен на товары и акции. Однако похоже, что он несколько упростил ситуацию с рыночными показателями, воспользовавшись распределениями, описывающими устойчивые по Леви процессы.
Читатель вправе спросить, а какими же распределениями описываются колебания цен в действительности? К сожалению, чем серьезнее ученые их изучают, тем более сложными они кажутся. Строго говоря, экономистам так и не удалось пока выделить единый тип функций распределения, описывающий рыночные колебания цен. Форма получаемых кривых иногда оказывается зависящей от размера колебаний (в процентах) на рассматриваемых интервалах или от масштаба времени. Например, показанная на рис. 8.3 кривая при очень больших интервалах между измерениями (например, порядка месяца или больше) начинает постепенно меняться, превращаясь в привычное гауссовское распределение. (Понятно, что такое сложное поведение статистических показателей вызывает у скептиков чувство, что единой теории поведения цен на рынке не может существовать вообще.) С другой стороны, наблюдаемые закономерности (и даже отклонения от закономерностей) практически совпадают почти для всех бирж мира, и американский индекс S&P 500 ведет себя почти так же, как главный показатель состояния японской экономики (индекс Никкей) или индекс Хэнг Сэнг в Гонконге. Такое сходство на глобальном уровне указывает все же на существование некоего универсального закона функционирования капиталистического рынка.
Остается вопрос, являются ли биржевые крахи типичными или нетипичными флуктуациями? Тут мы оказываемся в лингвистической ловушке. В каком-то смысле они являются нетипичными, поскольку происходят редко, что, впрочем, представляется банальностью с точки зрения чистой статистики, так как редкие события и должны происходить редко по определению. С другой стороны, очень важно определить, укладывается ли вероятность их появления на хвост кривой, описывающей малые флуктуации? Неожиданность и редкость крахов биржи не позволяют дать определенный ответ на этот важнейший для экономистов вопрос. Некоторые ученые полагают, что даже эти редкие события точно укладываются на нормальное распределение, вследствие чего мы не можем даже считать такие отклонения аномальными, т. е. они органически вписываются в общую статистику функционирования рынка и возникают на основе тех же фундаментальных законов, которые отвечают за малые флуктуации. Однако ряд экономистов не соглашается с этим утверждением, и, например, Мантенья и Фабрицио Лилло показали, что кратковременные статистические распределения отклонений в дни, предшествующие потрясениям на бирже или сразу после краха, отличаются от нормы, что не укладывается в рамки привычных представлений.
В целом можно констатировать, что точная статистика рыночных флуктуаций, бесспорно, не является чисто случайной (гауссовской), а имеет некоторые особенности при больших значениях. Что это означает для теории экономического развития?