Как «услышать» разложение Фурье?

We use cookies. Read the Privacy and Cookie Policy

Рояль был весь раскрыт и струны в нем дрожали...

А. Фет

Можно проверить, что функции yM(t, х) в формуле (5.18) удовлетворяют волновому уравнению. Линейные комбинации таких решений также являются решениями. Этот способ решения волнового уравнения открыл еще Даниил Бернулли (метод Бернулли), но лишь Фурье сумел с полной ясностью доказать, что так можно получить самое общее решение и что в этом смысле метод Бернулли равносилен методу Д'Аламбера. Разложение произвольного колебания струны в сумму мод (5.18) и другие подобные разложения (например, разложение бегущей волны на сумму синусоидальных бегущих волн) называются разложениями Фурье. Если периодическая функция f(х) с периодом 2l (т. е. f(х + 2l) = f(х) при любом х) представлена в виде суммы

то легко проверить, что д'аламберова волна (5.10) при g(х) = f(х) представляется в виде суммы мод (5.18), в которой следует положить ?M = 2?v/?M.

Обычно амплитуды АM быстро убывают с ростом номера моды М. Рассмотрим, например, движение струны, оттянутой в средней точке и после этого отпущенной. Так возбуждаются колебания струн щипковых инструментов. При этом «звучат» все моды *), но их амплитуды быстро убывают с ростом частоты. Ухо воспринимает как высоту звука частоту, соответствующую низшей (основной) моде, а примесь высших мод определяет тембр. Звуки, вызванные очень высокими модами, не воспринимаются по двум причинам. Во-первых, их амплитуда мала. Во-вторых, ухо просто «не слышит» частоты больше 20 кГц (это, кстати, объясняет бедность тембра высоких звуков.)

*) Синусоидальные моды часто называют гармониками, что особенно естественно, если речь идет о музыке. Мы называем гармониками только синусоидальные бегущие волны, так что разложение Фурье для стоячей волны — это разложение на нормальные моды, а для бегущей — разложение на гармоники.

Таким образом, о высших модах часто можно просто забыть и с легким сердцем пользоваться разложением Фурье с конечным и даже небольшим числом членов. Разложение бегущей волны на простые гармоники с полным основанием можно рассматривать не просто как математическое изобретение, а как физический процесс, который наблюдается постоянно. Этот процесс называется гармоническим анализом, а проборы, которые его осуществляют, называют гармоническими анализаторами. Они откликаются (резонируют) **) на гармоники, частота которых близка к одной из собственных частот (т. е. к частоте одной из мод). Таким образом можно выяснить частотный состав произвольного колебания. Простейшие анализаторы звука — монохорд или же просто струны любого музыкального инструмента. При достаточной силе звука они начинают дрожать и даже звучать, если среди набора частот (или, как говорят, в спектре частот) падающей на них звуковой волны есть достаточно сильная составляющая, частота которой совпадает с их собственной частотой.

**) От лат. sonare — звучать, resonare — звучать в ответ, откликаться. Отсюда же «соната».

Как мы знаем, в среде без дисперсии волна с небольшой амплитудой распространяется, не изменяя формы. На языке разложения на гармоники это связано с тем, что все ее простые гармонические составляющие распространяются с одинаковой скоростью. Это можно сказать не только об обычных периодических волнах, но и об импульсах, подобных изображенным на рис. 5.3. Как показал Фурье, такие импульсы тоже можно разложить в ряд по гармоникам. Только при этом в разложении Фурье будут содержаться гармоники с неограниченно возрастающей длиной волны.

В среде с дисперсией импульс тоже можно представить в виде суммы гармоник, но теперь его форма будет изменяться со временем, так как разные гармоники движутся с разными скоростями. Например, горбик, бегущий по дискретной цепочке (рис. 5.3) можно разложить в сумму синусоидальных волн. Однако с течением времени длинноволновые гармоники будут обгонять коротковолновые, и горбик начнет расплываться. Его передняя часть (фронт) постепенно будет становиться более пологой. Для звуковых волн, воспринимаемых человеческим ухом, это обычно совершенно несущественно. Их длины настолько велики, что дисперсия коротких волн, определяемая формулой (5.17), не успевает проявиться.