Язык фазовых диаграмм

We use cookies. Read the Privacy and Cookie Policy

Математика — тоже язык!

Приписывается Дж. У. Гиббсу

Язык для всех равно чужой,

И внятный каждому...

Ф. Тютчев

Основная ценность всего этого длинного, не самого простого и не самого красивого способа решения задачи о малых колебаниях маятника состоит, конечно, в том, что этим же способом можно изучить любые колебания. При этом на новом языке «большие» (нелинейные) колебания выглядят ненамного сложнее малых. Иными словами, новый язык лучше приспособлен для решения сложных задач, и его нужно изучать. Свободное владение языком означает, что при чтении вам не нужно переводить с него на родной. Поначалу этого достичь нелегко, и приходится заниматься переводом. С течением времени, попрактиковавшись в применениях этого языка, вы вдруг замечаете, что начинаете на нем думать, и необходимость в переводе возникает все реже и реже.

Чем же отличается новый язык от обычного? Главное, разумеется, не в том, что мы изобразили движение другим способом, а в том, что мы сумели совсем по-новому подойти к проблеме. Действительно, нарисовать фазовую диаграмму можно, не решая никаких дифференциальных уравнений. Изобразив на одном и том же графике в плоскости (?, ?'/?0) кривые, соответствующие разным значениям энергии, легко сразу находить максимальные значения отклонения маятника и его скорости. Нетрудно также составить общее представление о характере движения с данной энергией. Чтобы понять, как движется маятник, вовсе не нужно знать его точное положение в любой момент времени, гораздо важнее знать общий характер его движений, который и дается фазовой диаграммой. К тому же любое конкретное движение можно восстановить по известной зависимости ?' от ? при данной энергии, которая называется фазовой траекторией. Нетрудно указать приближенный способ восстановления обычной траектории по фазовой траектории, но соответствующее вычисление можно сделать сколь угодно точным, затратив соответственно большее время. Для ЭВМ решение любой такой конкретной задачи вообще не проблема.

Язык фазовых диаграмм и фазовых траекторий — очень современный, и систематически применять его начали сравнительно недавно. Закон сохранения энергии применялся значительно раньше. В особенно ясной форме это сделал знаменитый немецкий математик Карл Вейерштрасс (1815—1897) *). Он рассматривал выражение для энергии (4.3) как дифференциальное уравнение для функции ?(t) и выражал его решения с помощью так называемых эллиптических функций, теории которых он, после Абеля и Якоби, придал законченный современный вид. Обобщения этой глубокой математической теории и сегодня применяются математиками и физиками для решения сложных нелинейных уравнений и играют очень важную роль в математической теории солитонов. Мы с сожалением должны пройти мимо этих прекрасных зданий, построенных математиками. Для описания их конструкций требуется слишком сложный математический язык. К счастью, основные свойства движений маятника и других не очень сложных систем можно описать на более простом и наглядном языке фазовых диаграмм и фазовых траекторий.

*) См. о нем в книге: Замечательные ученые. — М.: Наука, 1980. — Библиотечка «Квант», вып. 9, в очерке о Софье Васильевне Ковалевской, талант которой он высоко ценил.

Впервые для этих целей его применил в 1885 г. французский математик, преподаватель Политехнической школы **) в Париже Анри Леоте (1847—1916). Он в основном занимался различными проблемами механики и использовал фазовые диаграммы для изучения работы некоторых автоматических регуляторов. Леоте не пытался создать какую-либо общую математическую теорию, и его подход к фазовым диаграммам был, скорее, физическим. Он не знал, что за три года до этого были уже заложены основы более общей математической теории. В 1882 г. 28-летний французский математик Анри Пуанкаре (1854—1912) начал публиковать серию работ под названием «О кривых, определяемых дифференциальными уравнениями», в которых он разработал качественный и геометрический подход к изучению решений дифференциальных уравнений.

Этот подход радикально отличался от принятых в то время представлений о том, что значит решить дифференциальное уравнение. Сам Пуанкаре это очень ясно понимал: «Итак, необходимо изучать функции, определенные дифференциальными уравнениями, сами по себе, не пытаясь сводить их к более простым функциям. Полное изучение функций состоит из двух частей: 1) качественной (так сказать), или геометрического изучения кривой, определенной функцией; 2) количественной, или вычисления значений функций... Так же для изучения алгебраической кривой начинают с того, что строят эту кривую, как говорят в курсах элементарной математики, т. е. находят, какие ветви кривой замкнуты, какие бесконечны и т. д. После этого качественного изучения кривой можно найти некоторое число отдельных точек.

**) Самое знаменитое высшее учебное заведение Франции того времени. В Политехнической школе учились Ампер, Араго, Френель, Пуассон, Коши и другие известные ученые, в том числе Леоте и Пуанкаре.

Естественно, что именно с качественной стороны должна начинаться теория всякой функции, и вот почему в первую очередь возникает следующая задача: построить кривые, определяемые дифференциальным уравнением. Это качественное изучение; когда оно будет проделано полностью, то принесет самую большую пользу численному анализу функций... Впрочем, это качественное изучение и само по себе будет иметь первостепенный интерес. Различные и чрезвычайно важные вопросы анализа и механики могут быть сведены к нему».

В наше время такие взгляды кажутся совершенно естественными, почти сами собой разумеющимися. Однако сто лет назад эти идеи выглядели слишком необычными и не могли быть сразу усвоены и признаны. Мешало этому усвоению также и сильное отклонение интуитивных, геометрических рассуждений Пуанкаре от принятых тогда канонов математической строгости доказательств — многие утверждения не были доказаны, а некоторые, как выяснилось впоследствии, оказались ошибочными. Тем не менее по мере того, как росла слава Пуанкаре, которого по праву считают величайшим французским математиком второй половины прошлого века *), его труды и идеи привлекали все большее внимание. Лет через двадцать-тридцать (!) начали появляться исследования, в которых качественная теория Пуанкаре получила развитие и строгое обоснование. Развитие этой теории продолжается и в наше время, и в любой книге, посвященной нелинейным дифференциальным уравнениям или нелинейным колебаниям, можно найти многократное упоминание его имени и ссылки на его работы.

*) Подобно Эйлеру и Гауссу он охватывал своими работами почти все основные направления в современной ему математике и физике. Будучи профессором Сорбонны, с 1881 г. до своей преждевременной смерти он каждый год читал лекции по новому предмету!

Иной была судьба Леоте. Связь его исследования с идеями Пуанкаре не была замечена ни самим Леоте, ни Пуанкаре, ни кем-либо другим, а статья Леоте была полностью забыта. Другие его труды по теории машин и механизмов, по различным приложениям математического анализа были высоко оценены, и он стал с 1890 г. членом Парижской академии наук. Но эта работа пребывала в забвении, пока о ней не вспомнил замечательный советский физик Александр Александрович Андронов (1901—1952). Он был учеником Леонида Исааковича Мандельштама (1879—1944) и под его влиянием занялся проблемами нелинейных колебаний. Еще будучи аспирантом Мандельштама, он «открыл» для себя труды Пуанкаре и сразу понял, что разработанный в них математический язык наиболее подходит для решения увлекших его проблем. Мандельштам эту идею чрезвычайно одобрил и поддержал, и в результате выросло целое направление, в дальнейшем детально разработанное уже Андроновым и его учениками (в особенности надо упомянуть А. А. Витта) и обогатившее не только физику и технику, но и саму качественную теорию дифференциальных уравнений. Как говорил Пуанкаре: «Физика не может обойтись без математики, которая представляет ей единственный язык, на котором она может говорить.

Отсюда взаимные и беспрестанные услуги, которые оказывают друг другу чистый анализ и физика. Замечательная вещь — работы аналитиков — были тем более плодотворны для физиков, чем более культивировались исключительно ради своей красоты. Взамен физика, ставя новые задачи, была столь же полезна математикам, как модель для художника».

Хотя эти слова замечательно точно и ясно описывают связь математики с физикой вообще и теории колебаний с теорией дифференциальных уравнений в частности, все-таки сразу видно, что они сказаны математиком. Физик никогда не согласится даже сравнить свою науку с моделью для математики, наоборот, он будет говорить о математических моделях тех или иных сложных физических явлений. Наиболее важная часть работы физика — найти подходящую математическую модель, описывающую наиболее важные черты исследованного физического явления. Следующий этап — изучение модели — по характеру более близок к работе «чистого» математика. Но и здесь физик остается физиком. Пути решения математических задач ему часто подсказывает физическая интуиция, а постановка этих задач просто «диктуется» физикой. Не математическая красота, а желание как можно точнее и глубже понять реальные физические явления определяет для физики и само представление о том, что значит решить математическую задачу. Так что афоризм Пуанкаре — это «правда, только правда, ничего кроме правды», но не «вся правда».

Чтобы не забывать об этом, приведем слова Л. И. Мандельштама о связи физики с математикой в теории колебаний: «Конечно, поскольку вы имеете дело с уравнениями, главным образом дифференциальными, то с некоторой точки зрения все это — математика. Но не в этом главное. Прежде всего потому, что именно физика учит нас, как допрашивать дифференциальные уравнения. В теории колебаний математический образ... имеет чрезвычайно наглядное, не только геометрическое, но и физическое содержание. Иначе говоря, в подкрепление к анализу вы здесь имеете не только геометрическую, но и физическую интуицию. Причем эта наглядность и интуиция может быть весьма разветвленной и богатой и может опираться на радиотехнический, электротехнический, оптический и тому подобный материал».

До сих пор мы говорили в основном о качественных методах изучения нелинейных колебаний. Однако качественное исследование решает половину задачи, да к тому же оно и не всегда возможно. Для физики, астрономии, механики этого мало — необходимо уметь рассчитывать движения системы, производить вычисления. Сегодня в этом очень помогают ЭВМ, но даже и они далеко не всегда могут справиться со сложными задачами, возникающими при изучении реальных систем.

Методы расчета движений сложных систем начали разрабатываться в XVIII в. и предназначались главным образом для вычисления планетных орбит. Если пренебречь притяжением планет друг к другу, а учитывать лишь их притяжение к Солнцу, то задача решается легко. Однако если попытаться рассчитать, скажем, движение Луны, то сразу обнаружится, что сделать это чрезвычайно трудно — нужно учитывать силы, действующие между тремя телами — Солнцем, Землей и Луной.

Первыми начали решать подобные задачи Д'Аламбер и Эйлер, которые и предложили идею так называемого метода возмущений. Она заключалась в том, чтобы выделить самые сильные взаимодействия, определяющие главные особенности движения, а остальными, малыми взаимодействиями (их называют возмущениями) сначала пренебречь. Если движения такой упрощенной системы («невозмущенные» движения ) удается рассчитать, то затем можно вычислить поправки, т. е. найти «возмущенное» движение.

Идеи Д'Аламбера и Эйлера подробно разработали Лагранж, Лаплас и Пуассон. В частности, Пуассон заметил, что этой идеей можно воспользоваться для расчета малых колебаний нелинейного маятника. При этом невозмущенными считаются колебания линейного маятника (sin ? заменяется на ?), а возмущение определяется нелинейными поправками к возвращающей силе. Метод Пуассона позволил получить хорошее приближение, если возмущение достаточно мало, а интервал времени, на котором нам нужно знать движение, не слишком велик (первая успешная попытка получить приближенные решения на сколь угодно большом интервале времени принадлежит Остроградскому).

Примерно по такой же схеме велись вычисления в небесной механике (невозмущенное движение — это движение по кеплеровым эллиптическим орбитам). Лагранж и особенно Лаплас выполнили большие и трудоемкие вычисления возмущенных движений планет, на основании которых можно было определить точные положения планет в далеком прошлом и будущем. Применяя их методы, Адамс и Леверье впоследствии обнаружили отклонение орбиты Урана от рассчитанных значений и объяснили это явление возмущающим влиянием новой, неизвестной планеты Нептун.

В дальнейшем А. Пуанкаре и замечательный русский математик Александр Михайлович Ляпунов (1857—1918) чрезвычайно усовершенствовали и обобщили методы возмущений. Хотя они в основном интересовались задачами небесной механики, созданные ими методы оказались столь общими, что их легко было приспособить к решению совсем других нелинейных задач физики и техники. Когда примерно 50 лет назад Мандельштам и Андронов начали применять методы Ляпунова и Пуанкаре в нелинейной радиофизике, они были немало поражены тем, сколь эффективны методы небесной механики при расчете, например, работы лампового генератора. С тех пор область применения этих методов постоянно расширялась.

Примерно в то же время Николай Митрофанович Крылов (1879—1955) и Николай Николаевич Боголюбов разработали новые методы теории возмущений в нелинейной механике, позволяющие описывать не только периодические, но и гораздо более сложные движения нелинейных систем. Эти методы были применены Н. Н. Боголюбовым к описанию хаотических движений в системах, состоящих из очень большого числа частиц. В последние годы, в особенности под влиянием идей А. Н. Колмогорова и В. И. Арнольда, началось объединение качественных и количественных методов исследования нелинейных систем. Все это привело к замечательному расцвету нелинейной механики, которая теперь с успехом применяется в самых разных науках и сыграла огромную роль в развитии теории солитонов.

Продолжим разбор движений маятника, следуя по пути, подсказываемому физической и отчасти геометрической интуицией. Ясно, что фазовые траектории можно нарисовать для движения маятников с любой энергией. Совокупность всех возможных фазовых траекторий составляет фазовый портрет. По этому портрету легко получить наглядное представление о всевозможных движениях.