§ 3. Повороты вокруг оси z

We use cookies. Read the Privacy and Cookie Policy

Теперь мы уже подготовлены к тому, чтобы отыскать матрицу преобразования Rji, связывающую два разных представления. Владея нашим правилом объединения поворотов и нашим предположением, что в пространстве нет предпочтительного направления, мы владеем ключом для отыскания матрицы любого произвольного поворота. Решение здесь только одно. Начнем с преобразования, которое отвечает повороту вокруг оси z. Пусть имеются два прибора S и Т, поставленных друг за другом вдоль одной прямой; оси их параллельны и смотрят из страницы на вас (фиг. 4.4, а).

Фиг. 4.4. Поворот на 90° вокруг оси z.

Это их направление мы примем за ось z. Ясно, что если пучок в приборе S идет вверх (к +z), то то же будет и в аппарате Т. Точно так же, если он в S идет вниз, то и в Т он направится вниз. Положим, однако, что прибор Т был повернут на какой-то угол, но его ось, как и прежде, параллельна оси прибора S, как на фиг. 4.4, б. Интуитивно хочется сказать, что пучок (+) в S будет по-прежнему переходить в пучок (+) в Т, потому что и поля, и их градиенты характеризуются тем же физическим направлением. И это вполне правильно. Точно так же и пучок (-) в S будет переходить в пучок (-) в Т. Тот же результат применим для любой ориентации Т в плоскости ху прибора S. Что же отсюда следует для связи между С'+=<+T|?>, С'-=<-T|?> и С+=<+S|?>, С-=<-S |?>? Можно подумать, что любой поворот вокруг оси z «системы отсчета» базисных состояний оставляет амплитуды С± пребывания «вверху» и «внизу» теми же, что и раньше, и написать С'+=С+ и С'-=С-. Но это неверно. Все, что можно отсюда заключить, — это, что при таких поворотах вероятности оказаться в «верхнем» пучке приборов S и Т одинаковы, т. е.

Но мы не вправе утверждать, что фазы амплитуд, относящихся к прибору Т, не могут в двух различных ориентациях а и б (фиг. 4.4) различаться.

Пары приборов, показанных на фиг. 4.4, на самом деле отличаются друг от друга, в чем можно убедиться следующим образом. Предположим, что мы перед прибором S поставили другой, создающий чистое (+x)-состояние. (Ось х направлена на рисунке вниз.) Эти частицы расщеплялись бы в S на пучки (+z) и (-z), но на выходе S (в точке Р1) оба пучка снова соединялись бы и восстанавливали состояние (+х). Затем то же самое происходило бы в Т. Если бы за Т поставить третий прибор U, ось которого направлена по (+х), как показано на фиг. 4.5, а, то все частицы пошли бы в пучок (+) прибора U.

Фиг. 4.5. Частица в состоянии (+х) ведет себя в опытах а и б по-разному.

Теперь представим, что произойдет, если Т и U вместе повернуть на 90°, как показано на фиг. 4.5, б. Прибор Т опять будет пропускать все, что в него поступает, так что частицы, входящие в U, будут в (+x)-состоянии по отношению к S. Но U теперь анализирует состояние (+y) (по отношению к S), а это совсем не то, что раньше. (Из симметрии следует ожидать, что через него пройдет только половина частиц.)

Что же могло перемениться? Приборы Т и U по отношению друг к другу расположены одинаково. Могла ли измениться физика просто из-за того, что Т и U иначе ориентированы? Нет, гласит наше первоначальное предположение. Значит, различаться в двух случаях, показанных на фиг. 4.5, должны амплитуды по отношению к Т. То же должно быть, следовательно, и на фиг. 4.4. Частица должна как-то уметь узнавать, что в Р1 она завернула за угол. Как же она может об этом поведать? Что ж, остается только одно: величины С'+ и С'+ в обоих случаях одинаковы, но могут — а на самом деле должны — обладать разными фазами. Мы приходим к заключению, что С'+ и С+ должны быть связаны формулой

а С'- и С- —формулой

где ? и ? — вещественные числа, которые как-то должны быть связаны с углом между S и Т.

В данный момент единственное, что мы можем сказать про ? и ?, — это то, что они не могут быть равны друг другу (кроме показанного на фиг. 4.5, а особого случая, когда Т и S ориентированы одинаково). Мы видели, что изменение всех амплитуд на одну и ту же фазу ни к каким физическим следствиям не приводит. По той же причине всегда можно добавить к ? и ? любое постоянное число — это тоже ничего не изменит. Значит, нам представляется возможность выбрать ? и ? равными плюс и минус одному и тому же числу. Всегда можно взять

Тогда

Итак, мы договоримся[12] считать ?=-? и придем к общему правилу, что поворот прибора, относительно которого ведется отсчет, вокруг оси z на какой-то угол приводит к преобразованию

(4.16)

Абсолютные значения одинаковы, а фазы различны. Эти-то фазовые множители и отвечают за различные результаты двух опытов, показанных на фиг. 4.5.

Теперь надо узнать закон, связывающий ? с углом между S и Т. Для одного случая ответ известен. Если угол — нуль, то и ? — нуль. Теперь предположим, что фазовый сдвиг ? есть непрерывная функция угла ? между S и Т (см. фиг. 4.4) при ?, стремящемся к нулю. По-видимому, это единственное разумное допущение. Иными словами, если свернуть Т с прямой линии S на малый угол ?, то и ? тоже будет малым числом, скажем m?, где m — некоторый коэффициент. Мы пишем m?, потому что можем доказать, что ? обязано быть пропорционально ?. Если бы мы поставили за T новый прибор Т, тоже образующий с Т угол ?, а с S тем самым образующий угол 2?, то по отношению к Т мы бы имели

а по отношению к T'

Но мы знаем, что должны были бы получить тот же результат если бы сразу за S поставили Т'! Значит, когда угол удваивается, то удваивается и фаза. Эти аргументы мы можем, естественно, обобщить и построить любой поворот из последовательных бесконечно малых поворотов. Мы заключаем, что ? пропорционально ? для любого угла ?. Поэтому всегда можно писать ?=m?.

Общий полученный нами результат состоит, следовательно, в том, что для Т, повернутого вокруг оси z относительно S на угол ?,

(4.17)

Для угла ? и для всех поворотов, которые встретятся нам в будущем, мы условимся считать, что положительным поворотом будет поворот правого винта, который ввинчивается в положительном направлении z.

Теперь остается узнать, каким должно быть m. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С'+=С+ и С'-=С-, или, что то же самое, eim2?=1. Мы получаем m=1. Это рассуждение не годится!

Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы m было равно единице, мы получили бы C'+=ei?C+=-C+ и C'-=e-i?C-=-C-. Но это просто опять получилось первоначальное состояние. Обе амплитуды попросту умножены на -1; это возвращает нас к исходной физической системе. (Опять случай всеобщей перемены фаз.) Это означает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (-х) начального прибора S. Так что состояние (+x) станет состоянием (-х). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы m=1.

Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m=1/2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол ?=360°[13]. При этом будет

(4.18)

Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переменить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю[14]. Итак, наш окончательный ответ таков: если мы знаем амплитуды С+ и С- для частиц со спином 1/2 по отношению к системе отсчета S и если затем мы используем базисную систему, связанную с Т (Т получается из S поворотом на ? относительно оси z), то новые амплитуды выражаются через старые так:

(4.19)