§ 5. Измерение ядерного спина
Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции
где ?1 — это ?-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:
Значит, на опыте видны возникающие в реакции две ?-частицы. Обозначим их ?1 и ?2; поскольку они вылетают с разными энергиями, их можно отличить друг от друга. Кроме того, выбирая ?1, имеющие нужную энергию, мы можем отобрать любые возбужденные состояния Ne20.
Опыт ставился так, как показано на фиг. 16.9.
Фиг. 16.9. Размещение приборов в опыте по определению спина возбужденных состояний Ne20.
Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая ?-частица регистрировалась кремниевым детектором, настроенным на прием ?-частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая ?-частица регистрировалась счетчиком ?2, поставленным под углом ? к ?1. Скорость счета сигналов совпадений от ?1 и ?2 измерялась как функция угла ?.
Идея опыта в следующем. Прежде всего нужно знать, что спины С12, О16 и ?-частицы все равны нулю. Назовем направление движения начальных частиц С12 направлением +z; тогда известно, что Ne20* должен обладать нулевым моментом количества движения относительно оси z. Ведь ни у одной из остальных частиц нет спина; кроме того, С12 прилетает вдоль оси z и ?1 улетает вдоль оси z, так что у них не может быть момента относительно этой оси. И каким бы ни был спин j ядра Ne20*, мы знаем, что это ядро находится в состоянии |j, 0>. Что же случится, когда Ne20* распадется на О16 и другую ?-частицу? Что ж, ?-частицу поймает счетчик ?2, а О16, чтобы сохранить начальный импульс, вынужден будет уйти в противоположную сторону[76]. Относительно новой оси (оси ?2) не может быть тоже никакой компоненты момента количества движения. А раз конечное состояние имеет относительно новой оси нулевой момент количества движения, то у распада Ne20* должна быть некоторая амплитуда того, что m'=0, где m'—квантовое число компоненты момента количества движения относительно новой оси. Вероятность наблюдать ?2 под углом ? будет на самом деле равна квадрату амплитуды (или матричного элемента)
(16.41)
Чтобы получить спин интересующего нас состояния Ne20*, вычертим интенсивность наблюдений второй ?-частицы как функцию угла и сравним с теоретическими кривыми для различных значений j. Как мы отмечали в конце предыдущего параграфа, амплитуды <j,0|Ry(?)|j,0>—это просто функции Рj(cos?). Значит, угловые распределения будут следовать кривым [Pj(cos?)]2. Экспериментальные результаты для двух возбужденных состояний показаны на фиг. 16.10.
Фиг. 16.10. Экспериментальные результаты измерений углового распределения ?-частиц, вылетающих при распаде двух возбужденных состояний Ne20. Они получены на устройстве, показанном на фиг. 16.9.
Вы видите, что угловое распределение для состояния 5,80 Мэв очень хорошо укладывается на кривую [Р1(cos?)]2, т. е. оно должно быть состоянием со спином 1. С другой стороны, данные для состояния 5,63 Мэв выглядят совершенно иначе; они ложатся на кривую [Р3(cos?)]2. Спин этого состояния равен 3.
В этом опыте мы измерили момент количества движения двух возбужденных состояний Ne20*. Этой информацией можно воспользоваться, чтобы понять, как ведут себя протоны и нейтроны внутри этого ядра, и это принесет нам добавочные сведения о таинственных ядерных силах.