§ 5. Выпрямление на полупроводниковом переходе
Теперь мы покажем, как получается, что p—n-переход действует как выпрямитель. Если мы к переходу приложим напряжение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпрямится». Посмотрим еще раз, что получается в условиях равновесия, описанных кривыми фиг. 12.9. В материале p-типа имеется высокая концентрация Np положительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положительных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у перехода, и только доля e-qV/?T их проходит дальше. Имеется также ток положительных носителей, приближающихся к переходу с другой стороны. Этот ток тоже пропорционален плотности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положительные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обозначим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:
(12.12)
Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.
Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину ?V — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-?V. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем
Этот ток превосходит ток I0 в e-q?V/?T раз. Значит, между I1 и I0 существует следующая связь:
(12.13)
Ток из p-области при приложении внешнего напряжения ?V растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока ?V не слишком велико.
Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p-область. (Если ?V больше естественной разности потенциалов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:
(12.14)
Дырочный ток I течет в n-область. Там дырки диффундируют в самую глубь n-области и могут, вообще говоря, аннигилировать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, восполняется током электронов из внешнего контакта материала n-типа.
Когда ?V=0, то и ток в (12.14) равен нулю. Если ?V положительна, ток с напряжением резко растет, а если ?V отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n-области перехода.
Если вы проведете в точности тот же анализ для тока отрицательных носителей, текущего через переход, сперва без внешней разности потенциалов, а после с небольшой приложенной извне разностью потенциалов ?V, то для суммарного электронного тока вы опять получите уравнение, похожее на (12.14). Поскольку полный ток есть сумма токов носителей обоего рода, то (12.14) применимо и к полному току, если только отождествить I0 с максимальным током, который может течь при перемене знака напряжения.
Вольтамперная характеристика (12.14) показана на фиг. 12.10.
Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.
Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряжениях, сравнимых с естественной внутренней разностью потенциалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.
Быть может, вы вспомните, что в точности такое же уравнение мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические процессы весьма схожи.