Сила – вектор
Сила – вектор
Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.
Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное сложение сил. На рис. 8 показан канат, на котором висит тюк. Веревкой человек оттягивает тюк в сторону. Канат натянут действием двух сил: силы тяжести тюка и силы человека.
Правило векторного сложения сил позволяет определить направление каната и вычислить силу его натяжения. Тюк находится в покое; значит, сумма действующих на него сил должна равняться нулю. А можно сказать и так – натяжение каната должно равняться сумме силы тяжести тюка и силы тяги в сторону, осуществляемой при помощи веревки. Сумма этих сил даст диагональ параллелограмма, которая будет направлена вдоль каната (ведь иначе она не сможет «уничтожиться» силой натяжения каната). Длина этой стрелки должна будет изображать силу натяжения каната. Такой силой можно было бы заменить две силы, действующие на тюк. Векторную сумму сил поэтому иногда называют равнодействующей.
Очень часто возникает задача, обратная сложению сил. Лампа висит на двух тросах. Для того чтобы определить силы натяжения тросов, вес лампы надо разложить по этим двум направлениям.
Из конца равнодействующего вектора (рис. 9) проведем линии, параллельные тросам, до пересечения с ними. Параллелограмм сил построен. Измеряя длины сторон параллелограмма, находим (в том же масштабе, в котором изображен вес) величины натяжений канатов.
Такое построение называется разложением силы. Всякое число можно представить бесконечным множеством способов в виде суммы двух или нескольких чисел; то же можно сделать и с вектором силы: любую силу можно разложить на две силы – стороны параллелограмма, – из которых одну всегда можно выбрать какой угодно. Ясно также, что к каждому вектору можно пристроить любой многоугольник.
Часто бывает удобным разложить силу на две взаимно перпендикулярные – одну вдоль интересующего нас направления и другую перпендикулярно к этому направлению. Их называют продольной и нормальной (перпендикулярной) составляющей силы.
Составляющую силы по какому-то направлению, построенную разложением по сторонам прямоугольника, называют еще проекцией силы на это направление.
Ясно, что на рис. 10
F2 = Fпрод2 + Fнорм2,
где Fпрод и Fнорм – проекция силы на выбранное направление и нормаль к нему.
Знающие тригонометрию без труда установят, что
Fпрод = F·cos ?,
где ? – угол между вектором силы и направлением, на которое она проецируется.
Очень любопытным примером разложения сил является движение корабля под парусами. Каким образом удается идти под парусами против ветра? Если вам приходилось наблюдать за парусной яхтой в этом случае, то вы могли заметить, что она движется зигзагами. Моряки называют такое движение лавированием.
Прямо против ветра идти на парусах, конечно, невозможно, но почему удается идти против ветра хотя бы под углом?
Возможность лавировать против ветра основывается на двух обстоятельствах. Во-первых, ветер толкает парус всегда под прямым углом к его плоскости. Посмотрите на рис. 11,а: сила ветра разложена на две составляющие – одна из них заставит воздух скользить вдоль паруса, другая – нормальная составляющая – оказывает давление на парус. Во-вторых, лодка движется не туда, куда ее толкает сила ветра, а туда, куда смотрит нос лодки.
Это объясняется тем, что движение лодки поперек килевой линии встречает очень сильное сопротивление воды. Значит, чтобы лодка двигалась носом вперед, надо, чтобы сила давления на парус имела бы составляющую вдоль килевой линии, смотрящую вперед.
Теперь рис. 11,б, на котором изображена идущая против ветра лодка, должен стать понятным вам. Парус устанавливают так, чтобы его плоскость делила пополам угол между направлением хода лодки и направлением ветра.
Для того чтобы найти силу, которая гонит лодку вперед, силу ветра придется разложить дважды. Сначала вдоль и перпендикулярно к парусу – имеет значение лишь нормальная составляющая, затем эту нормальную составляющую надо разложить вдоль и поперек килевой линии. Продольная составляющая и гонит лодку под углом к ветру.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
2. Центробежная сила
2. Центробежная сила Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще какой-нибудь легкий и неломкий предмет. Вы убедитесь, что зонтик словно не желает принять подарка: мяч или бумажный ком сами
Сила = геометрия
Сила = геометрия Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало,
Самая загадочная сила природы
Самая загадочная сила природы Не говорю уже о том, как мало у нас надежды найти когда-нибудь вещество, непроницаемое для тяготения. Причина тяготения нам неизвестна: со времен Ньютона, открывшего эту силу, мы ни на шаг не приблизились к познанию ее внутренней сущности. Без
Глава 3 Гравитация — первая фундаментальная сила
Глава 3 Гравитация — первая фундаментальная сила С небес на землю и обратно В современной физике говорят о четырех фундаментальных силах. Первой открыли силу гравитации. Известный школьникам закон всемирного тяготения определяет силу притяжения F между любыми массами
73 Сила в сантиметрах, или Наглядно закон Гука
73 Сила в сантиметрах, или Наглядно закон Гука Для опыта нам потребуются: воздушный шарик, фломастер. В школе проходят закон Гука. Жил такой знаменитый ученый, который изучал сжимаемость предметов и веществ и вывел свой закон. Закон этот очень простой: чем сильнее мы
Ускорение и сила
Ускорение и сила Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем большим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем
Сила Кориолиса
Сила Кориолиса Своеобразие мира вращающихся систем не исчерпывается существованием радиальных сил тяжести. Познакомимся с еще одним интересным эффектом, теория которого была дана в 1835 году французом Кориолисом.Поставим перед собой такой вопрос: как выглядит
Сила и потенциальная энергия при колебании
Сила и потенциальная энергия при колебании При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к
Вращательный момент как вектор
Вращательный момент как вектор До сих пор речь шла о величине вращательного момента. Но вращательный момент обладает свойствами векторной величины.Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 62 изображены два близких положения точки.
Великая сила «пустяков»
Великая сила «пустяков» У Леночки Казаковой может оторваться пуговица от платья, но она от этого не перестанет быть Леночкой Казаковой. Законы науки, особенно законы физики, не допускают ни малейшего неряшества. Воспользовавшись аналогией, можно сказать, что законы
«Покорный вектор» — величайшее изобретение человечества
«Покорный вектор» — величайшее изобретение человечества Всякая направленная величина в физике, то есть величина, для характеристики которой надо знать не только ее абсолютное значение (как говорят: модуль), но и направление в пространстве, называется вектором. Величина,
Лошадиная сила и работа лошади
Лошадиная сила и работа лошади Мы часто слышим выражение «лошадиная сила» и привыкли к нему. Поэтому мало кто отдает себе отчет в том, что это старинное наименование совершенно неправильно. «Лошадиная сила» – не сила, а мощность и притом даже не лошадиная. Мощность – это
Сила звука
Сила звука Как ослабевает звук с расстоянием? Физик ответит вам, что звук ослабевает «обратно пропорционально квадрату расстояния». Это означает следующее: чтобы звук колокольчика на тройном расстоянии был слышен так же громко, как на одинарном, нужно одновременно