VI. Движение твердых тел
VI. Движение твердых тел
Момент силы
Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.
Что же изменилось? Ведь сила в обоих случаях одна и та же. Изменилась точка приложения силы.
Во всем предыдущем изложении вопрос о месте приложения силы не возникал, так как в рассмотренных задачах форма и размер тела роли не играли. По сути дела мы мысленно заменяли тело точкой.
Пример с вращением колеса показывает, что вопрос о точке приложения силы далеко не праздный, когда речь идет о вращении или повороте тела.
Для того чтобы понять роль точки приложения силы, вычислим работу, которую надо проделать, чтобы повернуть тело на некоторый угол. При этом расчете, конечно, предполагается, что все частички твердого тела жестко сцеплены между собой (мы оставляем пока без внимания способность тела гнуться, сжиматься – вообще менять свою форму). Поэтому сила, приложенная к одной точке тела, сообщает кинетическую энергию всем его частям.
При вычислении этой работы роль точки приложения сил отчетливо видна.
На рис. 49 показано закрепленное на оси тело. При повороте тела на маленький угол ? точка приложения силы переместилась по дуге – прошла путь s.
Проектируя силу на направление движения, т.е. на касательную к окружности, по которой движется точка приложения, напишем знакомое выражение работы A:
A = Fпрод·s
Но дуга s может быть представлена как
s = r?,
где r – расстояние от оси вращения до точки приложения силы. Итак,
A = Fпрод·r?.
Поворачивая тело на один и тот же угол разными способами, мы можем затратить различную работу в зависимости от того, где приложена сила.
Если угол задан, то работа определяется произведением Fпрод·r. Такое произведение называют моментом силы:
M = Fпрод·r
Формуле момента силы можно придать другой вид. Пусть O – ось вращения и B – точка приложения силы (рис. 50). Буквой d обозначена длина перпендикуляра, опущенного из O на направление силы. Два треугольника, построенные на рисунке, подобны. Поэтому
Величина d называется плечом силы. Новая формула M = Fd читается так: момент силы равен произведению силы на ее плечо.
Если точку приложения силы перемещать вдоль направления силы, то плечо d, а вместе с ним и момент силы не будут меняться. Значит, безразлично, где именно на линии силы лежит точка приложения.
При помощи нового понятия формула для работы запишется короче:
A = M?,
т.е. работа равняется произведению момента силы на угол поворота.
Пусть на тело действуют две силы с моментами M1 и M2. При повороте тела на угол ? будет совершена работа M1? + M2? = (M1 + M2)?. Эта краткая запись показывает, что две силы с моментами M1 и M2 вращают тело так, как это делала бы одна сила с моментом M, равным сумме M1 + M2. Моменты сил могут как помогать, так и мешать друг другу. Если моменты M1 и M2 стремятся повернуть тело в одну и ту же сторону, то мы должны считать их величинами, имеющими одинаковый алгебраический знак. Напротив, моменты сил, поворачивающие тело в разные стороны, имеют разные знаки.
Как мы знаем, работа всех сил, действующих на тело, идет на изменение кинетической энергии.
Вращение тела замедлилось или ускорилось – значит, изменилась его кинетическая энергия. Это может произойти лишь в том случае, если суммарный момент сил не равен нулю.
А если суммарный момент равен нулю? Ответ ясен – кинетическая энергия не изменяется, следовательно, тело или вращается равномерно по инерции, или покоится.
Итак, равновесие способного вращаться тела требует уравновешивания действующих на него моментов сил. Если действуют две силы, равновесие требует равенства
M1 + M2 = 0.
Пока нас интересовали такие задачи, в которых тело можно было рассматривать как точку, условия равновесия были проще: чтобы тело покоилось или двигалось равномерно, говорил закон Ньютона для таких задач, надо, чтобы результирующая сила равнялась нулю; силы, действующие вверх, должны уравновеситься силами, направленными вниз; сила вправо должна компенсироваться силой влево.
Этот закон действителен и для нашего случая. Если маховое колесо находится в покое, то действующие на него силы уравновешиваются реакцией оси, на которую насажено колесо.
Но этих необходимых условий становится недостаточно. Кроме уравновешивания сил требуется еще уравновешивание моментов сил. Уравновешивание моментов является вторым необходимым условием покоя или равномерного вращения твердого тела.
Моменты сил, если их много, без труда разбиваются на две группы: одни стремятся вращать тело вправо, другие – влево. Эти-то моменты и должны компенсироваться.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
ПРОЧНОСТЬ ТВЕРДЫХ ТЕЛ И МЕХАНИЗМ ИХ ДЕФОРМАЦИИ
ПРОЧНОСТЬ ТВЕРДЫХ ТЕЛ И МЕХАНИЗМ ИХ ДЕФОРМАЦИИ Огромный вклад в эту чрезвычайно важную область физики внесли работы академика Абрама Федоровича Иоффе и его учеников.Большинство твердых тел имеет кристаллическую структуру. Долгое время в физике господствовали
Эфир и движение
Эфир и движение Принцип относительности Галилея справедлив для механических явлений. Во всех инерциальных системах, движущихся относительно друг друга, применимы одни и те же законы механики. Справедлив ли этот принцип и для немеханических явлений, особенно тех, для
АНАЛИТИЧЕСКАЯ МЕХАНИКА СИСТЕМ ТОЧЕК И ТВЕРДЫХ ТЕЛ В ДОВОЕННЫЙ ПЕРИОД
АНАЛИТИЧЕСКАЯ МЕХАНИКА СИСТЕМ ТОЧЕК И ТВЕРДЫХ ТЕЛ В ДОВОЕННЫЙ ПЕРИОД Более интенсивно, чем где бы то ни было за рубежом, в Советском Союзе развивались вариационные методы, велась работа по построению аналитической механики в новых переменных (групповых, неголономных). В
Сплошной спектр твердых веществ
Сплошной спектр твердых веществ Читатель, вероятно, обратил внимание на то, что линейчатые спектры ученые получали от раскаленных паров металлов. Физики рассмотрели также спектры и от твердых раскаленных металлов. Всякий по опыту знает, что металлы при нагревании
20. Механические свойства твердых тел и биологических тканей
20. Механические свойства твердых тел и биологических тканей Характерным признаком твердого тела является способность сохранять форму. Твердые тела можно разделить на кристаллические и аморфные.Отличительным признаком кристаллического состояния служит анизотропия –
9. Движение Луны
9. Движение Луны Луна обращается вокруг Земли с периодом в 27 дней 7 часов 43 минуты и 11,5 секунды. Этот период называется звездным, или сидерическим, месяцем. Точно с таким же периодом обращается Луна и вокруг собственной оси. Поэтому понятно, что к нам постоянно обращена
Движение относительно
Движение относительно Закон инерции приводит нас к выводу о множественности инерциальных систем.Не одна, а множество систем отсчета исключают «беспричинные» движения.Если одна такая система найдена, то сразу же найдется и другая, движущаяся поступательно (без
Движение по окружности
Движение по окружности Если точка движется по окружности, то движение является ускоренным, уже хотя бы потому, что в каждый момент времени скорость меняет свое направление. По величине скорость может оставаться неизменной, и мы остановим внимание именно на подобном
Реактивное движение
Реактивное движение Человек движется, отталкиваясь от земли; лодка плывет потому, что гребцы отталкиваются веслами от воды; теплоход также отталкивается от воды, только не веслами, а винтами. Также отталкиваются от земли и поезд, идущий по рельсам, и автомашина, –
Испарение твердых тел
Испарение твердых тел Когда говорят «вещество испаряется», то обычно подразумевают, что испаряется жидкость. Но твердые тела тоже могут испаряться. Иногда испарение твердых тел называют возгонкой.Испаряющимся твердым телом является, например, нафталин. Нафталин
Очистка твердых тел
Очистка твердых тел На склянке с химическим веществом, как правило, можно увидеть рядом с химическим названием такие буквы: «ч.», «ч.д.а.» или «сп.ч.». Этими буквами условно отмечают степень чистоты вещества: «ч.» означает весьма небольшую степень чистоты – в веществе,
Движение по кругу
Движение по кругу Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще что-нибудь легкое и неломкое. Произойдет нечто для вас неожиданное. Зонтик словно не пожелает принять подарка: мяч или бумажный ком
Явления магнитного резонанса в твердых телах
Явления магнитного резонанса в твердых телах Если мы теперь рассмотрим твердотельный материал, то в нем разные магнитные моменты ядер или электронов могут в присутствии внешнего магнитного поля сложиться, давая полный магнитный момент (это получается в веществах,