Одни и те же атомы, но разные кристаллы
Одни и те же атомы, но разные кристаллы
Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный, твердый, режущий стекло алмаз построены из одних и тех же атомов – атомов углерода. Почему же так различны свойства этих двух одинаковых по составу веществ?
Вспомните решетку слоистого графита, каждый атом которого имеет трех ближайших соседей, и решетку алмаза, атом которого имеет четырех ближайших соседей. На этом примере отчетливо видно, как определяются свойства кристаллов взаимным расположением атомов. Из графита делают огнеупорные тигли, выдерживающие температуру до двух-трех тысяч градусов, а алмаз горит при температуре выше 700°; удельный вес алмаза 3,5, а графита – 2,3; графит проводит электрический ток, алмаз – не проводит, и т.д.
Этой особенностью давать разные кристаллы обладает не только углерод. Почти каждый химический элемент, и не только элемент, но и любое химическое вещество, может существовать в нескольких разновидностях. Известно шесть разновидностей льда, девять разновидностей серы, четыре разновидности железа.
Обсуждая диаграмму состояния, мы не говорили о разных типах кристаллов и нарисовали единую область твердого тела. А эта область для очень многих веществ делится на участки, каждый из которых соответствует определенному «сорту» твердого тела или, как говорят, определенной твердой фазе (определенной кристаллической модификации).
Каждая кристаллическая фаза имеет свою область устойчивого состояния, ограниченную определенным интервалом давлений и температур. Законы превращения одной кристаллической разновидности в другую – такие же, как законы плавления и испарения.
Для каждого давления можно указать температуру, при которой оба типа кристаллов будут мирно сосуществовать. Если повысить температуру, кристалл одного вида будет превращаться в кристалл второго вида. Если понизить температуру, то произойдет обратное превращение.
Чтобы при нормальном давлении красная сера превратилась в желтую, нужна температура ниже 110 °C. Выше этой температуры, вплоть до точки плавления, устойчив порядок расположения атомов, свойственный красной сере. Температура падает – колебания атомов уменьшаются, и, начиная со 110 °C, природа находит более удобный порядок расположения атомов. Происходит превращение одного кристалла в другой.
Шести разным льдам никто не придумывал названия. Так и говорят: лед один, лед два, …, лед семь. Как же семь, если всего шесть разновидностей? Дело в том, что лед четыре при повторных опытах не обнаружен.
Если сжимать воду при температуре около нуля, то при давлении около 2000 атм образуется лед пять, а при давлении около 6000 атм – лед шесть.
Лед два и лед три устойчивы при температурах ниже нуля градусов.
Лед семь – горячий лед; он возникает при сжатии горячей воды до давлений около 20000 атм.
Все льды, кроме обычного, тяжелее воды. Лед, получающийся при нормальных внешних условиях, ведет себя аномально; наоборот, лед, полученный при условиях, отличных от нормы, ведет себя нормально.
Мы говорим, что каждой кристаллической модификации свойственна определенная область существования. Но если так, то каким же образом существуют при одинаковых условиях графит и алмаз?
Такое «беззаконие» в мире кристаллов встречается очень часто. Умение жить в «чужих» условиях для кристаллов является почти правилом. Если для перевода пара или жидкости в чужие области существования приходится прибегать к различным ухищрениям, то кристалл, напротив, почти никогда не удается заставить остаться в границах, отведенных ему природой.
Перегревы и переохлаждения кристаллов объясняются трудностью преобразования одного порядка в другой в условиях крайней тесноты. Желтая сера должна при 95,5 °C превращаться в красную. При более или менее быстром нагревании мы «проскочим» эту точку превращения и доведем температуру плавления серы до 113 °C.
Истинную температуру превращения проще всего обнаружить при соприкосновении кристалликов. Если их тесно наложить один на другой и поддерживать температуру 96 °C, то желтый будет съеден красным, а при 95 °C желтый поглотит красный. В отличие от перехода «кристалл – жидкость» превращения «кристалл – кристалл» задерживаются обычно как при переохлаждении, так и при перегреве.
В некоторых случаях мы имеем дело с такими состояниями вещества, которым бы полагалось жить совсем при других температурах.
Белое олово должно превратиться в серое при падении температуры до +13 °C. Мы обычно имеем дело с белым оловом и знаем, что зимой с ним ничего не делается. Оно превосходно выдерживает переохлаждения в 20–30 градусов. Однако в условиях суровой зимы белое олово превращается в серое. Незнание этого факта было одним из обстоятельств, погубивших экспедицию Скотта на Южный полюс (1912 г.). Жидкое топливо, взятое экспедицией, находилось в сосудах, паянных оловом. При больших холодах белое олово превратилось в серый порошок – сосуды распаялись, и топливо вылилось. Недаром появление серых пятен на белом олове называют оловянной чумой.
Так же, как и в случае серы, белое олово может быть превращено в серое при температуре чуть ниже 13 °C, если только на оловянный предмет попадет крошечная крупинка серой разновидности.
Существование нескольких разновидностей одного и того же вещества и задержки в их взаимных превращениях имеют огромное значение для техники.
При комнатной температуре атомы железа образуют кубическую объемноцентрированную решетку, в которой атомы занимают места по вершинам и в центре куба. Каждый атом имеет 8 соседей. При высокой температуре атомы железа образуют более плотную «упаковку» – каждый атом имеет 12 соседей. Железо с числом соседей 8 – мягкое, железо с числом соседей 12 – твердое. Оказывается, можно получить железо второго типа при комнатной температуре. Этот способ – закалка – широко применяется в металлургии.
Производится закалка весьма просто – металлический предмет раскаляют докрасна, а затем бросают в воду или в масло. Охлаждение происходит так быстро, что превращение структуры, устойчивой при высокой температуре, не успевает произойти. Таким образом, высокотемпературная структура будет неограниченно долго существовать в несвойственных ей условиях: перекристаллизация в устойчивую структуру идет настолько медленно, что практически не заметна.
Говоря о закалке железа, мы были не вполне точны. Закаляют сталь, т.е. железо, содержащее доли процента углерода. Наличие совсем малых примесей углерода задерживает превращение твердого железа в мягкое и позволяет производить закалку. Что же касается совсем чистого железа, то его закалить не удается – превращение структуры успевает произойти даже при самом резком охлаждении.
В зависимости от вида диаграммы состояния, меняя давление или температуру, достигают тех или иных превращений.
Многие превращения кристалла в кристалл наблюдаются при изменении одного лишь давления. Таким способом был получен черный фосфор.
Превратить графит в алмаз удалось лишь используя одновременно и высокую температуру, и большое давление. На рис. 105 показана диаграмма состояния углерода.
При давлениях ниже десяти тысяч атмосфер и при температурах меньше 4000 K устойчивой модификацией является графит. Таким образом, алмаз живет в «чужих» условиях, поэтому его без особого труда можно превратить в графит. Но практический интерес представляет обратная задача. Осуществить превращение графита в алмаз не удается одним лишь повышением давления. Фазовое превращение в твердом состоянии идет, видимо, чересчур медленно. Вид диаграммы состояния подсказывает правильное решение: увеличить давление и одновременно нагреть. Тогда мы получим (правый угол диаграммы) расплавленный углерод. Охлаждая его при высоком давлении, мы должны попасть в область алмаза. Практическая возможность подобного процесса была доказана в 1955 г., а в настоящее время проблема считается технически решенной.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава III. Атомы и частицы
Глава III. Атомы и частицы 1. Атомная структура материи Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи
Свет и атомы
Свет и атомы Почему атомы светятся? Свет рождается в веществе. Таково происхождение и видимого света, и инфракрасного, и ультрафиолетового, и рентгеновских излучений, и гамма-излучений. Естественно, что, изучая свойства света, можно в конечном счете узнать, при каких
2. Кристаллы-близнецы
2. Кристаллы-близнецы Рассмотрим внимательно большое количество кристаллов одного и того же вещества. Не все образцы будут представлять собой правильные фигуры. Некоторые кристаллики будут просто обломками, другие будут иметь одну, две грани «ненормально» развитыми.
12. Кристаллы и свет
12. Кристаллы и свет Гладкие грани кристаллов отражают свет подобно самому чистому зеркалу. Наряду с другими, некристаллическими телами: водой, стеклом – кристаллы также преломляют свет. То, что свет, падая из воздуха в более плотную среду, или, наоборот, из воды в воздух,
14. Как растут кристаллы
14. Как растут кристаллы Водяной пар, вода и лёд – это одно и то же вещество, молекулы которого состоят из 2-х атомов водорода и одного атома кислорода. Можно сказать про лёд, что это – твёрдая вода, или про воду, что это – жидкий лёд. Одно и то же вещество существует в трёх
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет? …очертанья грозные событий, Нам предстоящих… У. Шекспир. Троил и Kpeccuдa Пер. Т. Гнедич Физика занимается изучением свойств покоящейся и движущейся материи и различных видов энергии. Связанные с движением
Глава вторая. Атомы
Глава вторая. Атомы Физические явления, происходящие в окружающем нас мире, представляют бесконечную цепь загадок. Вода, охлаждаясь, превращается в твердый, бесцветный лед, нагреваясь же, становится невидимым водяным паром. Если ее слегка подкислить серной кислотой и
26 Кристаллы на дому
26 Кристаллы на дому Для опыта нам потребуются: банка, соль. Превращения вещества из жидкого в твердое, из газа в жидкость очень часты. Мы просто не привыкли это замечать. Между тем мы можем легко наблюдать очень интересное явление – выпадение вещества из раствора, где оно
75 Разные потоки вокруг нас
75 Разные потоки вокруг нас Для опыта нам потребуется: обычная свечка. Если говорить про воздушные и водные потоки, то при всем их многообразии существует два принципиально различных потока. Один тип называется ламинарным, то есть спокойным, а другой – турбулентным, то
Разные точки зрения на движение
Разные точки зрения на движение Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут верны, но с разных
Атомы
Атомы Около 2000 лет назад в Древнем Риме была написана оригинальная поэма. Ее автором был римский поэт Лукреций Кар. «О природе вещей» – так называлась поэма Лукреция.Звучными стихами рассказал Лукреций в своем поэтическом произведении о взглядах древнегреческого
Кристаллы
Кристаллы Многие думают, что кристаллы – это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники, стороны (грани) их
Одни и те же атомы, но разные кристаллы
Одни и те же атомы, но разные кристаллы Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный, твердый, режущий стекло алмаз построены из одних и тех же атомов – атомов углерода. Почему же так различны свойства этих двух одинаковых по составу
Атомы
Атомы Уже Демокрит и Лесипс в V в. до н.э. говорили об атомах. Римский поэт Лукреций (98—55 до н.э.) в De rerum natura, объясняя теорию Демокрита, говорил, что воздух, земля и все другие вещи мира сделаны из набора частиц или корпускул — атомов, находящихся в безостановочном и очень