Силы сопротивления при больших скоростях
Силы сопротивления при больших скоростях
Но вернемся к законам «мокрого» трения. Как мы выяснили, при малых скоростях сопротивление зависит от вязкости жидкости, скорости движения и линейных размеров тела. Рассмотрим теперь законы трения при больших скоростях. Но прежде надо сказать, какие скорости считать малыми, а какие большими. Нас интересует не абсолютная величина скорости, а то, является ли скорость достаточно малой, чтобы выполнялся рассмотренный выше закон вязкого трения.
Оказывается, нельзя назвать такое число метров в секунду, чтобы во всех случаях при меньших скоростях были применимы законы вязкого трения. Граница применения изученного нами закона зависит от размеров тела и от степени вязкости и плотности жидкости.
Для воздуха «малыми» являются скорости меньше
для воды – меньше
а для вязких жидкостей, вроде густого меда, – меньше
Таким образом, к воздуху и особенно к воде законы вязкого трения мало применимы: даже при малых скоростях, порядка 1 см/с, они будут годиться лишь для крошечных тел миллиметрового размера. Сопротивление, испытываемое ныряющим в воду человеком, ни в какой степени не подчиняется закону вязкого трения.
Чем же объяснить, что при изменении скорости меняется закон сопротивления среды? Причины надо искать в изменении характера обтекания жидкостью движущегося в нем тела. На рис. 110 изображены два круговых цилиндра, движущихся в жидкости (ось цилиндра перпендикулярна к чертежу). При медленном движении жидкость плавно обтекает движущийся предмет – сила сопротивления, которую ему приходится преодолевать, есть сила вязкого трения (рис. 110, а). При большой скорости позади движущегося тела возникает сложное запутанное движение жидкости (рис. 110, б). В жидкости то появляются, то пропадают различные струйки, они образуют причудливые фигуры, кольца, вихри. Картина струек все время меняется. Появление этого движения, называемого турбулентным, в корне меняет закон сопротивления.
Турбулентное сопротивление зависит от скорости и размеров предмета совсем иначе, чем вязкое: оно пропорционально квадрату скорости и квадрату линейных размеров. Вязкость жидкости при этом движении перестает играть существенную роль; определяющим свойством становится ее плотность, причем сила сопротивления пропорциональна первой степени плотности жидкости (газа). Таким образом, для силы F турбулентного сопротивления справедлива формула
где v – скорость движения, L – линейные размеры предмета и ? – плотность среды. Числовой коэффициент пропорциональности, которого мы не написали, имеет различные значения в зависимости от формы тела.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
НА НАС ВЛИЯЮТ ПРИРОДНЫЕ СИЛЫ
НА НАС ВЛИЯЮТ ПРИРОДНЫЕ СИЛЫ Приняв, что все это истинно, мы приходим к рассмотрению некоторых сил и влияний, которые воздействуют на этот чудесный сложный автоматический механизм с органами невообразимо чувствительными и изящными, когда его несет вращающийся
IV Можно ли укрыться от силы тяжести?
IV Можно ли укрыться от силы тяжести? Мы слишком привыкли к тому, что все вещи, все физические тела прикованы своим весом к земле; нам трудно поэтому даже мысленно отрешиться от силы тяжести и представить себе картину того, что было бы, если бы мы обладали способностью
Заслон от силы тяжести
Заслон от силы тяжести Остроумный английский писатель Герберт Уэльс подробно развил эту мысль в научно-фантастическом романе „Первые люди на Луне"[4].Ученый герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для
К главе II 1. Силы тяготения
К главе II 1. Силы тяготения Приведенные в начале главы II примеры действия силы тяготения могут быть проверены несложными расчетами, основанными, на законе Ньютона и элементах механики. Напомним сначала, что в механике за единицу измерения силы принята сила, которая,
IV. Откуда же берутся эти силы?
IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис — не более чем конвульсивное размахивание
16. Без юридической силы
16. Без юридической силы Хотя меня в некоторой степени утешала новообретенная независимость духа, семейный катаклизм на самом деле сломил меня. Во тьме поражения я чувствовала, что опозорена и что от меня все отреклись, что я неуклюже пытаюсь вновь найти свою личность, как
Четыре силы
Четыре силы Словно мало было хлопот с новыми частицами, в те же 1930 — е годы были открыты еще и новые поля. К уже известному тяготению и электромагнетизму добавились силы ядерного взаимодействия, удерживающие протоны и нейтроны в ядре, и силы слабого взаимодействия,
83 Еще раз про силы сцепления
83 Еще раз про силы сцепления Для опыта нам потребуются: два кусочка стекла или два маленьких зеркальца. Мы помним, как иголка плавала на воде в одном из наших опытов. Помогали ей плавать силы поверхностного натяжения. Но вот вопрос: можно ли почувствовать силу
Движение под действием силы тяжести
Движение под действием силы тяжести Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки
Момент силы
Момент силы Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.Что же изменилось? Ведь сила в обоих случаях одна и та же. Изменилась
Поверхностные силы
Поверхностные силы Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение – и
Силы трения
Силы трения Мы не в первый раз говорим о трении. И правда, как можно было, рассказывая о движении, обойтись без упоминания о трении? Почти любое движение окружающих нас тел сопровождается трением. Останавливается автомобиль, у которого водитель выключил мотор,
IV. Откуда же берутся эти силы?
IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис – не более чем конвульсивное размахивание