Молекулы

We use cookies. Read the Privacy and Cookie Policy

Молекулы

Молекулы состоят из атомов. Атомы связаны в молекулы силами, которые называют химическими силами.

Существуют молекулы, состоящие из двух, трех, четырех атомов. Крупнейшие молекулы – молекулы белков – состоят из десятков и даже сотен тысяч атомов.

Царство молекул исключительно разнообразно. Уже сейчас химики выделили из природных веществ и создали в лабораториях миллионы веществ, построенных из разных молекул.

Свойства молекул определяются не только тем, сколько атомов того или иного сорта участвует в их постройке, но и тем, в каком порядке и в какой конфигурации они соединены. Молекула – это не груда кирпичей, а сложная архитектурная постройка, где каждый кирпич имеет свое место и своих вполне определенных соседей. Атомная постройка, образующая молекулу, может быть в большей или меньшей степени жесткой. Во всяком случае, каждый из атомов совершает колебание около своего положения равновесия. В некоторых же случаях одни части молекулы могут вращаться по отношению к другим частям, придавая свободной молекуле в процессе ее теплового движения различные и самые причудливые конфигурации.

Разберем подробнее взаимодействие атомов. На рис. 86 изображена кривая потенциальной энергии двухатомной молекулы. Она имеет характерный вид – сначала идет вниз, затем загибается, образуя «яму», и потом более медленно приближается к горизонтальной оси, по которой отложено расстояние между атомами.

Мы знаем, что устойчиво состояние, в котором потенциальная энергия имеет наименьшее значение. Когда атом входит в состав молекулы, он «сидит» в потенциальной яме, совершая небольшие тепловые колебания около положения равновесия.

Расстояние от вертикальной оси до дна ямы можно назвать равновесным. На этом расстоянии расположились бы атомы, если бы прекратилось тепловое движение.

Кривая потенциальной энергии рассказывает о всех деталях взаимодействия между атомами. Притягиваются или отталкиваются частицы на том или ином расстоянии, возрастает или убывает сила взаимодействия при отдалении или сближении частиц – все эти сведения можно получить из анализа кривой потенциальной энергии. Точки левее «дна» соответствуют отталкиванию. Напротив, участки кривой правее дна ямы характеризуют притяжение.

Важные сведения сообщает и крутизна кривой: чем круче идет кривая, тем больше сила.

Находясь на больших расстояниях, атомы притягиваются один к другому; эта сила весьма быстро уменьшается с увеличением расстояния между ними. При сближении сила притяжения возрастает и достигает наибольшего значения уже тогда, когда атомы подойдут один к другому очень близко. При еще большем сближении притяжение ослабевает и, наконец, на равновесном расстоянии сила взаимодействия обращается в нуль. При сближении атомов на расстояние, меньшее равновесного, возникают силы отталкивания, которые очень резко нарастают и быстро делают практически невозможным дальнейшее уменьшение расстояния.

Равновесные расстояния (ниже мы будем говорить короче – расстояния) между атомами различны для разных сортов атомов.

Для разных пар атомов различны не только расстояния от вертикальной оси до дна ямы, но и глубина ям.

Глубина ямы имеет простой смысл – чтобы выкатиться из ямы, нужна энергия, как раз равная глубине. Поэтому глубину ямы можно назвать энергией связи частиц.

Расстояния между атомами молекул столь малы, что для их измерения надо выбрать подходящие единицы, иначе пришлось бы выражать их значения, например, в таком виде: 0,000000012 см. Это цифра для молекулы кислорода.

Единицы, особенно удобные для описания атомного мира, называются ангстремами (правда, фамилия шведского ученого, именем которого названы эти единицы, правильно читается Онгстрем; для напоминания об этом над буквой А ставят кружок).

1 ? = 10?8 см,

т.е. одной стомиллионной доле сантиметра.

Расстояния между атомами молекул лежат в пределах от 1 до 4 ангстрем. Написанное выше равновесное расстояние для кислорода равно 1,2 ?.

Межатомные расстояния, как вы видите, очень малы. Если опоясать земной шар веревкой у экватора, то длина «пояса» во столько же раз будет больше ширины вашей ладони, во сколько раз ширина ладони больше расстояния между атомами молекулы.

Для измерения энергии связи пользуются обычно калориями, но относят их не к одной молекуле, что дало бы, разумеется, ничтожную цифру, а к грамм-молекуле, т.е. к числу граммов, равному относительному молекулярному весу.

Ясно, что энергия связи на грамм-молекулу, если ее поделить на число Авогадро N = 6,023·1023, даст энергию связи одной молекулы.

Энергия связи атомов в молекуле, как и межатомные расстояния, колеблется в незначительных пределах.

Для того же кислорода энергия связи равна 116 000 калорий на грамм-молекулу, для водорода – 103 000 калорий и т.д.

Мы уже говорили, что атомы в молекулах располагаются вполне определенным образом одни по отношению к другим, образуя в сложных случаях весьма замысловатые постройки.

Приведем несколько простых примеров. В молекуле СO2 (углекислый газ) все три атома расположены в ряд – атом углерода посередине. Молекула воды Н2O имеет уголковую форму, вершиной угла (он равен 105°) является атом кислорода.

В молекуле аммиака NH3 атом азота находится в вершине трехгранной пирамиды; в молекуле метана СН4 атом углерода находится в центре четырехгранной фигуры с равными сторонами, которая называется тетраэдром.

Атомы углерода бензола С6Н6 образуют правильный шестиугольник. Связи атомов углерода с водородом идут от всех вершин шестиугольника. Все атомы расположены в одной плоскости.

Схемы расположения центров атомов этих молекул показаны на рис. 87 и 88. Линии символизируют связи.

Прошла химическая реакция; были молекулы одного сорта, образовались другие. Одни связи порваны; другие созданы вновь. Для разрыва связей между атомами – вспомните рисунок – нужно затратить такую же работу, как при выкатывании шара из ямы. Напротив, при образовании новых связей энергия выделяется – шар скатывается в яму.

Что больше, работа разрыва или работа созидания? В природе мы сталкиваемся с реакциями обоих типов.

Излишек энергии называется тепловым эффектом, или короче – теплотой превращения (реакции). Тепловые эффекты реакций – это большей частью величины порядка десятков тысяч калорий при расчете на моль. Очень часто тепловой эффект включают в качестве слагаемого в формулу реакции.

Например, реакция сгорания углерода в виде графита, т.е. соединения его с кислородом, пишется так:

С + О2 = СO2 + 94 250 кал.

Это значит, что при соединении С с O2 выделяется энергия 94 250 калорий.

Сумма внутренних энергий грамм-атома углерода в графите и грамм-молекулы кислорода равняется внутренней энергии грамм-молекулы углекислого газа плюс 94 250 калорий.

Таким образом, подобные записи имеют ясный смысл алгебраических равенств, записанных для величин внутренней энергии.

С помощью таких уравнений можно найти тепловые эффекты превращений, для которых не годятся по тем или иным причинам прямые способы измерения. Вот пример: если бы углерод (графит) соединить с водородом, то образовался бы газ ацетилен:

2С + Н2 = С2Н2.

Реакция не идет таким путем. Тем не менее можно найти ее тепловой эффект. Запишем три известные реакции –

окисление углерода:

2С + 2О2 = 2СО2 + 188 000,

окисление водорода:

Н2 + (1/2)О2 = Н2О + 68 000,

окисление ацетилена:

С2Н2 + (5/2)O2 = 2СО2 + Н2О + 312 000.

Все эти равенства можно рассматривать как уравнения для энергий связи молекул. Если так, то ими можно оперировать как с алгебраическими равенствами. Вычитая из нижнего два верхних, получим:

2С + H2 = С2Н2 ? 56 000.

Значит, интересующее нас превращение сопровождается поглощением 56 000 калорий на одну грамм-молекулу.