Центр тяжести
Центр тяжести
Все частички тела обладают весом. Поэтому твердое тело находится под действием бесчисленного количества сил тяжести. При этом все эти силы параллельны. Если так, то их можно сложить по правилам, которые мы только что рассматривали, и заменить одной силой. Точка приложения суммарной силы называется центром тяжести. В этой точке как бы сосредоточен вес тела.
Подвесим тело за одну из его точек. Как оно при этом расположится? Поскольку мы можем мысленно заменить тело одним сосредоточенным в центре тяжести грузом, ясно, что в равновесии этот груз будет лежать на вертикали, проходящей через точку опоры. Другими словами, в равновесии центр тяжести лежит на вертикали, проходящей через точку опоры, и находится в самом низком положении.
Можно расположить центр тяжести на вертикали, проходящей через ось, и над точкой опоры. Это удастся сделать с большим трудом и только благодаря наличию трения. Такое равновесие неустойчиво.
Мы уже говорили об условии устойчивого равновесия – потенциальная энергия должна быть минимальна. Так оно и есть в том случае, когда центр тяжести лежит ниже точки опоры. Любое отклонение повышает центр тяжести и, значит, увеличивает потенциальную энергию. Напротив, когда центр тяжести лежит над точкой опоры, то любое дуновение, выводящее тело из этого положения, ведет к уменьшению потенциальной энергии. Такое положение неустойчиво.
Вырежем из картона фигуру. Для того чтобы найти центр ее тяжести, подвесим ее два раза, приклеивая нитку-подвес сначала в одной, а потом в другой точке тела. Закрепим фигуру на оси, проходящей через центр тяжести. Повернем фигуру в одно положение, второе, третье… Мы обнаружим полное безразличие тела к нашим операциям. В любом положении осуществляется специальный случай равновесия. Его так и называют – безразличным.
Причина этого ясна – при любом положении фигуры заменяющая ее материальная точка находится в одном и том же месте.
В ряде случаев центр тяжести можно найти и без опыта и вычислений. Ясно, например, что центры тяжести шара, круга, квадрата, прямоугольника находятся в центрах этих фигур, так как они симметричны. Если мысленно разбить симметричное тело на частички, то каждой из них будет соответствовать другая, расположенная симметрично по другую сторону от центра. А для каждой пары таких частиц центр фигуры явится центром тяжести.
У треугольника центр тяжести лежит на пересечении медиан. Действительно, разобьем треугольник на узенькие полоски, параллельные одной из сторон. Медиана делит пополам каждую из полосок. Но центр тяжести полоски лежит, конечно, посередине полоски, т.е. на медиане. Центры тяжести всех полосок попадают на медиану, и когда мы будем складывать их силы веса, мы придем к выводу, что центр тяжести треугольника лежит где-то на медиане. Но это рассуждение верно в отношении любой из медиан. Поэтому центр тяжести должен лежать на их пересечении.
Но, может быть, вы не уверены, что три медианы пересекаются в одной точке. Это доказывается в геометрии; но наше рассуждение тоже доказывает эту интересную теорему. Ведь у тела не может быть несколько центров тяжести; а раз он один и лежит он на медиане, из какого бы угла мы ее ни провели, то значит, все три медианы пересекаются в одной точке. Постановка физического вопроса помогла нам доказать геометрическую теорему. Труднее найти центр тяжести однородного конуса. Из соображений симметрии ясно только, что центр тяжести лежит на осевой линии. Расчет показывает, что он находится на расстоянии 1/4 высоты от основания. Центр тяжести не обязательно находится внутри тела. Например, центр тяжести кольца находится в его центре, т.е. вне кольца.
Можно ли устойчиво поставить на стеклянной подставке булавку в вертикальном положении?
На рис. 57 показано, как это сделать. Небольшое сооружение из проволоки в виде двойного коромысла с четырьмя маленькими грузиками надо жестко прикрепить к булавке. Так как грузики подвешены ниже опоры, а вес булавки мал, то центр тяжести лежит ниже точки опоры. Положение устойчиво.
До сих пор речь шла о телах, имевших точку опоры. А что будет, если тело опирается на целую площадку?
Ясно, что в этом случае расположение центра тяжести над опорой вовсе не говорит о неустойчивости равновесия. Как иначе могли бы стоять стаканы на столе? Для устойчивости нужно, чтобы линия действия силы тяжести, проведенная из центра тяжести, проходила через площадь опоры. Наоборот, если линия действия силы проходит вне площади опоры, то тело падает.
Степень устойчивости может быть очень различной в зависимости от того, как высоко расположен центр тяжести над опорой. Стакан с чаем опрокинет только очень неловкий человек, а вот цветочную вазу с маленьким основанием можно опрокинуть неосторожным прикосновением. В чем здесь дело?
Взгляните на рис. 58. Одна и та же опрокидывающая сила, складываясь с силой тяжести, дает суммарную силу, которая прижимает тело к опоре, если центр тяжести расположен низко, а при высоко расположенном центре тяжести суммарная сила не проходит через площадь опоры, а направлена в сторону.
Мы сказали, что для устойчивости тела приложенная к нему сила должна пройти через площадь опоры. Но площадь опоры, нужная для равновесия, не всегда соответствует фактической площади опоры. На рис. 59 изображено тело, площадь опоры которого имеет форму полумесяца. Легко сообразить, что устойчивость тела не изменится, если полумесяц дополнить до сплошного полукруга. Таким образом, площадь опоры, определяющая условие равновесия, может быть больше фактической.
Чтобы найти опорную площадь для изображенного на рис. 60 треножника, надо его концы соединить отрезками прямых.
Почему так трудно ходить по канату? Потому, что площадь опоры резко уменьшается. Ходить по канату нелегко, и не даром награждают аплодисментами искусного канатоходца. Однако иногда зрители впадают в ошибку и признают за вершину искусства хитрые трюки, облегчающие задачу. Артист берет сильно изогнутое коромысло с двумя ведрами воды; ведра оказываются на уровне каната. С серьезным лицом, при замолкшем оркестре, артист совершает переход по канату. Как усложнен трюк, думает неопытный зритель. На самом же деле артист облегчил свою задачу, понизив центр тяжести.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Невидимые оковы тяжести
Невидимые оковы тяжести В старину, говорят, к ноге каторжника приковывали цепь с тяжелой гирей, чтобы отяжелить его шаг и сделать неспособным к побегу. Все мы, жители Земли, незримо отягчены подобною же гирею, мешающей нам вырваться из земного плена в окружающий простор
IV Можно ли укрыться от силы тяжести?
IV Можно ли укрыться от силы тяжести? Мы слишком привыкли к тому, что все вещи, все физические тела прикованы своим весом к земле; нам трудно поэтому даже мысленно отрешиться от силы тяжести и представить себе картину того, что было бы, если бы мы обладали способностью
Заслон от силы тяжести
Заслон от силы тяжести Остроумный английский писатель Герберт Уэльс подробно развил эту мысль в научно-фантастическом романе „Первые люди на Луне"[4].Ученый герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для
VI Вопреки тяжести. — На волнах света
VI Вопреки тяжести. — На волнах света Из трех мыслимых способов борьбы с тяготением мы рассмотрели и отвергли два: способ защиты от тяготения и способ ослабления земной тяжести. Мы убедились, что ни тот, ни другой не дают человечеству надежды успешно разрешить заманчивую
К главе X 11. Жизнь при отсутствии тяжести
К главе X 11. Жизнь при отсутствии тяжести По поводу настоящей книжки в печати и в письмах к автору высказывалось опасение, что последствия для живого организма от помещения его в среду без тяжести должны быть роковыми. Опасения эти, однако, ни на чем, в сущности, не
I. Где находится центр Вселенной?
I. Где находится центр Вселенной? Если вы хоть немного похожи на нас, то выросли с убеждением, что вы — центр Вселенной, и на первый взгляд наблюдения Хаббла подтверждают эту теорию. Кажется, что все галактики разбегаются от нас врассыпную (хорошо, если хотите, Вселенная
52 Как далеко от нас центр грозы?
52 Как далеко от нас центр грозы? Была такая шутка. Мальчик спрашивает папу: почему мы сначала видим молнию, а уже потом слышим звук? Папа отвечает: это потому что глаза находятся впереди ушей!Конечно, это шутка. На самом деле так все происходит вот почему. Свет «бежит» по
54 Как найти центр тяжести
54 Как найти центр тяжести Для опыта нам потребуется: обыкновенная палка. Мы уже знаем правило: чтобы стабилизировать, выровнять полет предмета, надо, чтобы его центр аэродинамического давления находился сзади центра тяжести. Но как быстро найти центр тяжести у палки,
99 Тело с перемещаемым центром тяжести
99 Тело с перемещаемым центром тяжести Для опыта нам потребуются: коробочка от «киндер-сюрприза», металлический или стеклянный шарик. Для этого опыта понадобится любой достаточно тяжелый шарик (можно металлический, можно стеклянный). Такие шарики продают в магазинах для
Движение под действием силы тяжести
Движение под действием силы тяжести Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки
Центр инерции
Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка
Вопреки тяжести
Вопреки тяжести Помощью зеркала вы можете удивить товарищей, показав им маленькое чудо: шары, вкатывающиеся вверх по крутому уклону, словно бы тяжесть для них не существовала. Само собою разумеется, что это будет обман зрения. Рис. 96. Кажется, будто шар катится вверхВам
I. Где находится центр Вселенной?
I. Где находится центр Вселенной? Если вы хоть немного похожи на нас, то выросли с убеждением, что вы – центр Вселенной, и на первый взгляд наблюдения Хаббла подтверждают эту теорию. Кажется, что все галактики разбегаются от нас врассыпную (хорошо, если хотите, Вселенная