Тембр звука

We use cookies. Read the Privacy and Cookie Policy

Тембр звука

Вы видели, как настраивают гитару – струну натягивают на колки. Если длина струны и степень натяжения подобраны, то струна будет издавать, если ее тронуть, вполне определенный тон.

Если, однако, вы послушаете звук струны, трогая ее в различных местах – посередине, на одной четверти от места крепления, в любом другом месте, то услышите не вполне одинаковые звуки. Тон будет один и тот же, а окраска звука, или, как говорят музыканты, тембр звука, будет различным. В чем же здесь дело и что придает звуку одной и той же тональности разную окраску?

Дело заключается в том, что одна и та же струна может колебаться не одним, а очень многими способами. Несколько типов возможных колебаний струны показано на рис. 119. Колебание с наименьшей частотой (ее также называют основной частотой) показано на левой схеме. Крайние точки закреплены, средняя точка совершает колебания с наибольшей амплитудой. Для того чтобы читатель ясно представил себе колебание всей струны, как целого, на рисунке изображено несколько последовательных ее положений. Есть и такое положение, когда вся струна вытянута в прямую – все точки струны одновременно проходят положение равновесия. На средней схеме показано колебание, которое происходит примерно с удвоенной частотой. Теперь, кроме крайних закрепленных точек, в покое находится и средняя точка струны. Такую покоящуюся точку называют узлом колебания. Максимальной амплитудой колебания обладают точки, находящиеся на расстояниях 1/4 от концов струны. Про эти точки говорят, что здесь лежат пучности колебания. Для ясности изображено несколько положений струны. И в этом случае, как и во всех других, все точки струны одновременно проходят через нуль.

Можно уже не комментировать правый рисунок, где показано колебание с примерно утроенной частотой – два узла и три пучности характерны для этого колебания.

В зависимости от возбуждения струна может колебаться и с большими частотами. Все эти частоты, как говорят, относятся к собственным колебаниям струны.

Собственные колебания струны, кроме основного, дают звуки, которые называются обертонами. Звук струны складывается из звуков основного тона и обертонов. Трогая струну в различных точках, мы создаем различные спектры колебания. Так, щипок в середине приведет к тому, что основной тон будет очень силен. Щипок на расстоянии 1/4 приведет к существенному звучанию обертона с удвоенной частотой. В произвольном случае спектр колебания будет содержать много обертонов разной силы. Эти обертоны и создают окраску (тембр) звука. Теперь нам становится понятным и разное звучание одного и того же тона, пропетого разными голосами или взятого на рояле или на скрипке. Все это – звуки одного тона, но разного состава обертонов. Это и придает звукам специфическую окраску. Сравните, например, две кривые на рис. 120,а и б. Это запись звука одного и того же тона, извлеченного из кларнета и рояля. Мы видим, что оба звука не представляют собой простых синусоидальных колебаний. Основная частота колебаний в обоих случаях одинакова – это и создает одинаковость тона. Но рисунки кривых разные. Они-то и показывают, что такое тембр.

Способность уха отличить ноту «до» рояля от той же ноты кларнета также основывается на разложении звука на гармонические составляющие, т.е. на основной тон и обертоны.

Кларнет принадлежит к большому классу духовых инструментов. Какие же колебания создают в этих случаях звуки определенной тональности и различных тембров? Это колебания воздушных столбов.

Музыкант, играющий на духовом инструменте, действует своим дыханием не как певец, а как гитарист рукой. Музыкант лишь приводит в колебание воздушный столб трубы. Что же касается тональности и тембра, то они устанавливаются музыкантом варьированием длины воздушного столба. В зависимости от длины воздушного столба воздух, находящийся в трубе, как и струна, приходит в колебания с определенными частотами.