Сила и потенциальная энергия при колебании
Сила и потенциальная энергия при колебании
При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к этому положению, сила ускоряет движение.
Проследим за этой силой на примере маятника. Грузик маятника находится под действием силы тяжести и силы натяжения нити. Разложим силу тяжести на две составляющие – одну, направленную вдоль нити, и другую, идущую перпендикулярно к ней по касательной к траектории. Для движения существенна лишь касательная составляющая силы тяжести. Она-то и есть в этом случае возвращающая сила. Что касается силы, направленной вдоль нити, то она уравновешивается противодействием со стороны гвоздика, на котором висит маятник, и принимать ее в расчет надо лишь тогда, когда нас интересует вопрос, выдержит ли нить тяжесть колеблющегося тела.
Обозначим через x величину смещения грузика. Перемещение происходит по дуге, но мы ведь условились изучать колебания вблизи положения равновесия. Поэтому мы не делаем различия между величиной смещения по дуге и отклонением груза от вертикали. Рассмотрим два подобных треугольника (рис. 45). Отношение соответствующих катетов равно отношению гипотенуз, т.е.
Величина mg/l во время колебания не меняется. Эту постоянную величину мы обозначим буквой k, тогда возвращающая сила равна F = kx. Мы приходим к следующему важному выводу: величина возвращающей силы прямо пропорциональна величине смещения колеблющейся точки от положения равновесия. Возвращающая сила максимальна в крайних положениях колеблющегося тела. Когда тело проходит среднюю точку, сила обращается в нуль и меняет свой знак или, иными словами, свое направление. Пока тело смещено вправо, сила направлена влево, и наоборот. Маятник служит простейшим примером колеблющегося тела. Однако мы заинтересованы в том, чтобы формулы и законы, которые мы находим, можно было бы распространить на любые колебания.
Период колебания маятника был выражен через его длину. Такая формула годится лишь для маятника. Но мы можем выразить период свободных колебаний через постоянную возвращающей силы k. Так как k = mg/l, то l/g = m/k, и, следовательно,
Эта формула распространяется на все случаи колебания, так как любое свободное колебание происходит под действием возвращающей силы.
Выразим теперь потенциальную энергию маятника через смещение из положения равновесия x. Потенциальная энергия грузика, когда он проходит низшую точку, может быть принята за нуль, и отсчет высоты подъема следует вести от этой точки. Обозначив буквой h разность высот точки подвеса и положения отклонившегося груза, запишем выражение потенциальной энергии: U = mg(l ? k) или, пользуясь формулой разности квадратов,
Но, как видно из рисунка, l2 ? h2 = x2, l и h различаются весьма мало, и поэтому вместо l + h можно подставить 2l. Тогда U = (mg/2l)x2, или
Потенциальная энергия колеблющегося тела пропорциональна квадрату смещения тела из положения равновесия.
Проверим правильность выведенной формулы. Потеря потенциальной энергии должна равняться работе возвращающей силы. Рассмотрим два положения тела – x2 и x1. Разность потенциальных энергий
Но разность квадратов можно записать как произведение суммы на разность. Значит,
Но x2 ? x1 есть путь, пройденный телом, kx1 и kx2 – значения возвращающей силы в начале и в конце движения, а (kx1 + kx2)/2 равно средней силе.
Наша формула привела нас к правильному результату: потеря потенциальной энергии равна произведенной работе.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)
Глава 14 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II) §1. Работа§2. Движение при наложенных связях§3. Консервативные силы§4. Неконсервативные силы§5. Потенциалы и поля§ 1. РаботаВ предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны,
ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ
ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в
2. Центробежная сила
2. Центробежная сила Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще какой-нибудь легкий и неломкий предмет. Вы убедитесь, что зонтик словно не желает принять подарка: мяч или бумажный ком сами
Сила = геометрия
Сила = геометрия Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало,
Самая загадочная сила природы
Самая загадочная сила природы Не говорю уже о том, как мало у нас надежды найти когда-нибудь вещество, непроницаемое для тяготения. Причина тяготения нам неизвестна: со времен Ньютона, открывшего эту силу, мы ни на шаг не приблизились к познанию ее внутренней сущности. Без
Глава 3 Гравитация — первая фундаментальная сила
Глава 3 Гравитация — первая фундаментальная сила С небес на землю и обратно В современной физике говорят о четырех фундаментальных силах. Первой открыли силу гравитации. Известный школьникам закон всемирного тяготения определяет силу притяжения F между любыми массами
73 Сила в сантиметрах, или Наглядно закон Гука
73 Сила в сантиметрах, или Наглядно закон Гука Для опыта нам потребуются: воздушный шарик, фломастер. В школе проходят закон Гука. Жил такой знаменитый ученый, который изучал сжимаемость предметов и веществ и вывел свой закон. Закон этот очень простой: чем сильнее мы
Сила – вектор
Сила – вектор Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное
Ускорение и сила
Ускорение и сила Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем большим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем
Сила Кориолиса
Сила Кориолиса Своеобразие мира вращающихся систем не исчерпывается существованием радиальных сил тяжести. Познакомимся с еще одним интересным эффектом, теория которого была дана в 1835 году французом Кориолисом.Поставим перед собой такой вопрос: как выглядит
Великая сила «пустяков»
Великая сила «пустяков» У Леночки Казаковой может оторваться пуговица от платья, но она от этого не перестанет быть Леночкой Казаковой. Законы науки, особенно законы физики, не допускают ни малейшего неряшества. Воспользовавшись аналогией, можно сказать, что законы
Лошадиная сила и работа лошади
Лошадиная сила и работа лошади Мы часто слышим выражение «лошадиная сила» и привыкли к нему. Поэтому мало кто отдает себе отчет в том, что это старинное наименование совершенно неправильно. «Лошадиная сила» – не сила, а мощность и притом даже не лошадиная. Мощность – это
Сила звука
Сила звука Как ослабевает звук с расстоянием? Физик ответит вам, что звук ослабевает «обратно пропорционально квадрату расстояния». Это означает следующее: чтобы звук колокольчика на тройном расстоянии был слышен так же громко, как на одинарном, нужно одновременно