Коэффициент полезного действия
Коэффициент полезного действия
При помощи различных машин можно заставить источники энергии производить различную работу – поднимать грузы, двигать станки, перевозить грузы и людей.
Можно подсчитать количество энергии, вложенной в машину, и значение полученной от нее работы. Во всех случаях цифра на выходе окажется меньше, чем цифра на входе, – часть энергии теряется в машине.
Доля энергии, которая полностью используется в машине на нужные нам цели, называется коэффициентом полезного действия (КПД) машины. Значения КПД дают обычно в процентах.
Если КПД равен 90 %, это значит, что машина теряет всего 10 % энергии. КПД 10 % означает, что машина использует всего лишь 10 % поступившей в нее энергии.
Если машина превращает в работу механическую энергию, то ее КПД в принципе можно сделать очень большим. Увеличение КПД достигается в этом случае борьбой с неизбежным трением. Улучшить смазку, ввести более совершенные подшипники, уменьшить сопротивление со стороны среды, в которой происходит движение, – вот средства приблизить КПД к единице (к 100 %).
Обычно при превращении механической энергии в работу в качестве промежуточного этапа (как на гидроэлектростанциях) используют электрическую передачу. Разумеется, это тоже связано с дополнительными потерями. Однако они невелики, и потери при преобразовании механической энергии в работу и в случае использования электрической передачи могут быть сведены к нескольким процентам.
Совсем иначе обстоит дело в тех случаях, когда машина использует химическую энергию вещества.
До настоящего времени не существует работающих в большом масштабе машин, которые превращали бы энергию горючего непосредственно в механическую или электрическую энергию. Поэтому неизбежен промежуточный этап превращения химической энергии в тепловую. Для получения работы из горючего вещества его нужно сжечь и создать в каком-то объеме (печи) высокую температуру. На разности температур между печью и окружающей средой и работает тепловая машина. Она отбирает часть потока тепловой энергии и превращает его в работу. Но только часть потока и ни в каких условиях не весь поток.
Если перепад температур невелик, то в сторону удается увести лишь маленький ручеек энергии, а при температуре среды забрать тепло у источника совсем невозможно. Если перепад температур большой, то в работу удается превратить гораздо более существенную часть теплового потока.
Полезное использование тепловой энергии может происходить с тем бо?льшим успехом, чем больше разность температур источника потока тепла и окружающей среды.
Эта разность температур ставит предел возможностям усовершенствования тепловой машины. Если ликвидировать все потери в машине, создать идеальные подшипники, пользоваться не существующими в природе идеальными теплоизолирующими и теплопроводящими материалами, то КПД все равно не будет равен единице, а лишь достигнет некоторого максимума. Это предельное значение КПД при превращении в работу теплового потока, идущего от нагретого тела с температурой Т1 к среде, находящейся при температуре Т0, равно:
Так, если источник теплового потока имеет температуру 100 °C, а среда 20 °C, то максимальный КПД равен 1 ? 293/373, т.е. около 20 %. При температуре источника 1000° получим уже 76 %.
Ясно, что надо стремиться сжигать топливо так, чтобы достигнуть как можно более высокой температуры.
Из сказанного понятно, сколь невыгодно использование теплового потока для производства механической работы. В лучших современных газовых турбинах (см. стр. 381) удается достигнуть КПД всего около 45 %. Было бы лучше всего научиться превращать химическую энергию непосредственно в механическую работу, минуя тепловую. Мы знаем, что в принципе при таком прямом превращении можно было бы избежать потерь энергии. Однако, как уже говорилось, техника пока еще не решила этой задачи.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ
Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ Добавление, сделанное после лекцииКогда я учился в школе, наш учитель физики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послушай-ка об одной интересной
5. Принцип наименьшего действия
5. Принцип наименьшего действия Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех
2. Теория излучения черного тела. Квант действия Планка
2. Теория излучения черного тела. Квант действия Планка Начало развитию квантовой теории положили относящиеся к 1900 г. работы Макса Планка по теории излучения черного тела. Попытка построить теорию излучения черного тела на основе законов классической физики привела к
3. Развитие гипотезы Планка. Квант действия
3. Развитие гипотезы Планка. Квант действия При построении своей теории равновесного теплового излучения Планк исходил из предположения, что вещество представляет собой совокупность электронных осцилляторов, при посредстве которых и происходит обмен энергией между
3. Прибор для наблюдения действия электричества — электроскоп
3. Прибор для наблюдения действия электричества — электроскоп Чтобы узнать, заряжен ли какой-нибудь предмет электричеством, пользуются простым прибором, который называется электроскопом. Электроскоп основан на том свойстве электричества, о котором только что
III. Действия, производимые молнией
III. Действия, производимые молнией 1. Как часто возникает молния? Не везде на земле грозы бывают одинаково часто.В некоторых жарких, тропических местах грозы происходят круглый год — почти каждый день. В других же местах, расположенных в северных районах, грозы бывают
Глава II Принцип действия ядерных бомб
Глава II Принцип действия ядерных бомб Напомнив некоторые общие сведения из области ядерной физики, мы можем перейти к изложению принципа действия ядерных бомб.Все ядерные бомбы делятся на две большие группы: бомбы, основанные на реакции деления, называемые иногда
II. Защита от поражающего действия ядерных бомб
II. Защита от поражающего действия ядерных бомб 1. Защита от светового излучения.Самая надежная защита от светового излучения заключается в том, чтобы не быть застигнутым вспышкой врасплох. Мы уже говорили, что световое излучение распространяется прямолинейно и
Глава VIII Принцип действия и возможности ядерного реактора
Глава VIII Принцип действия и возможности ядерного реактора I. Устройство ядерного реактора Ядерный реактор состоит из следующих пяти основных элементов:1) ядерного горючего;2) замедлителя нейтронов;3) системы регулирования;4) системы охлаждения;5) защитного