XV. Звук

We use cookies. Read the Privacy and Cookie Policy

XV. Звук

Звуковые колебания

Мы уже сообщили читателю много сведений о колебаниях. Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны – этим вопросам была посвящена пятая глава книги. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее. Понятно также, что дело не может ограничиться влиянием лишь на близлежащий слой воздуха. Тело сожмет ближайший слой, этот слой давит на следующий – и так слой за слоем, частица за частицей приводится в движение весь окружающий воздух. Мы говорим, что воздух пришел в колебательное состояние или что в воздухе происходят звуковые колебания.

Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Физика пользуется понятием звуковых колебаний в более широком смысле. Какие звуковые колебания мы слышим – об этом будет рассказано ниже.

Речь идет о воздухе лишь потому, что звук чаще всего передается через воздух. Но, разумеется, нет никаких особых свойств у воздуха, чтобы за ним оказалось монопольное право совершать звуковые колебания. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. Учение о таких колебаниях обычно называют акустикой.

При звуковых колебаниях каждая частица воздуха в среднем остается на месте – она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия – амплитудой и периодом колебания, т.е. временем, затрачиваемым на совершение полного колебания.

Для описания свойств звуковых колебаний чаще пользуются понятием частоты колебания, нежели периодом. Частота ? = 1/T есть величина, обратная периоду.

Единица частоты – обратная секунда (с?1). Если частота колебания равна 100 с?1, то это значит, что за одну секунду частица воздуха совершит 100 полных колебаний. Вместо того, чтобы говорить: «100 обратных секунд», можно сказать «100 герц» (Гц) или «100 циклов». Так как в физике весьма часто приходится иметь дело с частотами, которые во много раз больше герца, то имеют широкое применение единицы килогерц (килоцикл) и мегагерц (мегацикл); 1 кГц = 103 Гц, 1 МГц = 106 Гц.

При прохождении равновесного положения скорость колеблющейся частицы максимальна. Напротив, в положениях крайних смещений скорость частицы, естественно, равняется нулю. Мы уже говорили, что если смещение частицы подчиняется закону гармонического колебания, то и изменение скорости колебания следует тому же закону. Если обозначить амплитуду смещения через s0, а скорости через v0, то s0 = 2?(s0/T) или v0 = 2??·s0. Громкий разговор приводит частицы воздуха в колебание с амплитудой смещения всего лишь в несколько миллионных долей сантиметра. Амплитудное значение скорости будет величиной порядка 0,02 см/с.

Другая важная физическая величина, колеблющаяся вместе со смещением и скоростью частицы, – это избыточное давление, называемое также звуковым. Звуковое колебание воздуха состоит в периодическом чередовании сжатия и разрежения в каждой точке среды. Давление воздуха в любом месте то больше, то меньше давления, которое было при отсутствии звука. Этот избыток (или недостаток) давления и называется звуковым. Звуковое давление составляет совсем небольшую долю нормального давления воздуха. Для нашего примера – громкий разговор – амплитуда звукового давления будет равна примерно миллионной доле атмосферы. Звуковое давление прямо пропорционально скорости колебания частицы, причем отношение этих физических величин зависит только от свойств среды. Например, звуковому давлению в воздухе в 1 дин/см2, соответствует скорость колебания 0,025 см/с.

Струна, колеблющаяся по закону синуса, приводит и частицы воздуха в гармоническое колебание. Шумы и сложные музыкальные звуки приводят к значительно более сложной картине. На рис. 114 показана запись звуковых колебаний, а именно звукового давления в зависимости от времени. Эта кривая мало похожа на синусоиду. Оказывается, однако, что любое сколь угодно сложное колебание может быть представлено как результат наложения одной на другую большого числа синусоид с разными амплитудами и частотами. Эти простые колебания, как говорят, составляют спектр сложного колебания. Для простого примера такое сложение колебаний показано на рис. 115.