Момент силы
Момент силы
Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.
Что же изменилось? Ведь сила в обоих случаях одна и та же. Изменилась точка приложения силы.
Во всем предыдущем изложении вопрос о месте приложения силы не возникал, так как в рассмотренных задачах форма и размер тела роли не играли. По сути дела мы мысленно заменяли тело точкой.
Пример с вращением колеса показывает, что вопрос о точке приложения силы далеко не праздный, когда речь идет о вращении или повороте тела.
Для того чтобы понять роль точки приложения силы, вычислим работу, которую надо проделать, чтобы повернуть тело на некоторый угол. При этом расчете, конечно, предполагается, что все частички твердого тела жестко сцеплены между собой (мы оставляем пока без внимания способность тела гнуться, сжиматься – вообще менять свою форму). Поэтому сила, приложенная к одной точке тела, сообщает кинетическую энергию всем его частям.
При вычислении этой работы роль точки приложения сил отчетливо видна.
На рис. 49 показано закрепленное на оси тело. При повороте тела на маленький угол ? точка приложения силы переместилась по дуге – прошла путь s.
Проектируя силу на направление движения, т.е. на касательную к окружности, по которой движется точка приложения, напишем знакомое выражение работы A:
A = Fпрод·s
Но дуга s может быть представлена как
s = r?,
где r – расстояние от оси вращения до точки приложения силы. Итак,
A = Fпрод·r?.
Поворачивая тело на один и тот же угол разными способами, мы можем затратить различную работу в зависимости от того, где приложена сила.
Если угол задан, то работа определяется произведением Fпрод·r. Такое произведение называют моментом силы:
M = Fпрод·r
Формуле момента силы можно придать другой вид. Пусть O – ось вращения и B – точка приложения силы (рис. 50). Буквой d обозначена длина перпендикуляра, опущенного из O на направление силы. Два треугольника, построенные на рисунке, подобны. Поэтому
Величина d называется плечом силы. Новая формула M = Fd читается так: момент силы равен произведению силы на ее плечо.
Если точку приложения силы перемещать вдоль направления силы, то плечо d, а вместе с ним и момент силы не будут меняться. Значит, безразлично, где именно на линии силы лежит точка приложения.
При помощи нового понятия формула для работы запишется короче:
A = M?,
т.е. работа равняется произведению момента силы на угол поворота.
Пусть на тело действуют две силы с моментами M1 и M2. При повороте тела на угол ? будет совершена работа M1? + M2? = (M1 + M2)?. Эта краткая запись показывает, что две силы с моментами M1 и M2 вращают тело так, как это делала бы одна сила с моментом M, равным сумме M1 + M2. Моменты сил могут как помогать, так и мешать друг другу. Если моменты M1 и M2 стремятся повернуть тело в одну и ту же сторону, то мы должны считать их величинами, имеющими одинаковый алгебраический знак. Напротив, моменты сил, поворачивающие тело в разные стороны, имеют разные знаки.
Как мы знаем, работа всех сил, действующих на тело, идет на изменение кинетической энергии.
Вращение тела замедлилось или ускорилось – значит, изменилась его кинетическая энергия. Это может произойти лишь в том случае, если суммарный момент сил не равен нулю.
А если суммарный момент равен нулю? Ответ ясен – кинетическая энергия не изменяется, следовательно, тело или вращается равномерно по инерции, или покоится.
Итак, равновесие способного вращаться тела требует уравновешивания действующих на него моментов сил. Если действуют две силы, равновесие требует равенства
M1 + M2 = 0.
Пока нас интересовали такие задачи, в которых тело можно было рассматривать как точку, условия равновесия были проще: чтобы тело покоилось или двигалось равномерно, говорил закон Ньютона для таких задач, надо, чтобы результирующая сила равнялась нулю; силы, действующие вверх, должны уравновеситься силами, направленными вниз; сила вправо должна компенсироваться силой влево.
Этот закон действителен и для нашего случая. Если маховое колесо находится в покое, то действующие на него силы уравновешиваются реакцией оси, на которую насажено колесо.
Но этих необходимых условий становится недостаточно. Кроме уравновешивания сил требуется еще уравновешивание моментов сил. Уравновешивание моментов является вторым необходимым условием покоя или равномерного вращения твердого тела.
Моменты сил, если их много, без труда разбиваются на две группы: одни стремятся вращать тело вправо, другие – влево. Эти-то моменты и должны компенсироваться.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
НА НАС ВЛИЯЮТ ПРИРОДНЫЕ СИЛЫ
НА НАС ВЛИЯЮТ ПРИРОДНЫЕ СИЛЫ Приняв, что все это истинно, мы приходим к рассмотрению некоторых сил и влияний, которые воздействуют на этот чудесный сложный автоматический механизм с органами невообразимо чувствительными и изящными, когда его несет вращающийся
IV Можно ли укрыться от силы тяжести?
IV Можно ли укрыться от силы тяжести? Мы слишком привыкли к тому, что все вещи, все физические тела прикованы своим весом к земле; нам трудно поэтому даже мысленно отрешиться от силы тяжести и представить себе картину того, что было бы, если бы мы обладали способностью
Заслон от силы тяжести
Заслон от силы тяжести Остроумный английский писатель Герберт Уэльс подробно развил эту мысль в научно-фантастическом романе „Первые люди на Луне"[4].Ученый герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для
К главе II 1. Силы тяготения
К главе II 1. Силы тяготения Приведенные в начале главы II примеры действия силы тяготения могут быть проверены несложными расчетами, основанными, на законе Ньютона и элементах механики. Напомним сначала, что в механике за единицу измерения силы принята сила, которая,
IV. Откуда же берутся эти силы?
IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис — не более чем конвульсивное размахивание
16. Без юридической силы
16. Без юридической силы Хотя меня в некоторой степени утешала новообретенная независимость духа, семейный катаклизм на самом деле сломил меня. Во тьме поражения я чувствовала, что опозорена и что от меня все отреклись, что я неуклюже пытаюсь вновь найти свою личность, как
Четыре силы
Четыре силы Словно мало было хлопот с новыми частицами, в те же 1930 — е годы были открыты еще и новые поля. К уже известному тяготению и электромагнетизму добавились силы ядерного взаимодействия, удерживающие протоны и нейтроны в ядре, и силы слабого взаимодействия,
83 Еще раз про силы сцепления
83 Еще раз про силы сцепления Для опыта нам потребуются: два кусочка стекла или два маленьких зеркальца. Мы помним, как иголка плавала на воде в одном из наших опытов. Помогали ей плавать силы поверхностного натяжения. Но вот вопрос: можно ли почувствовать силу
Движение под действием силы тяжести
Движение под действием силы тяжести Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки
Вращательный момент
Вращательный момент Сейчас мы познакомимся еще с одним механическим понятием, которое позволяет сформулировать новый для нас важный закон движения.Это понятие называется вращательным моментом, или моментом импульса, или моментом количества движения. Уже названия
Вращательный момент как вектор
Вращательный момент как вектор До сих пор речь шла о величине вращательного момента. Но вращательный момент обладает свойствами векторной величины.Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 62 изображены два близких положения точки.
Поверхностные силы
Поверхностные силы Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение – и
Силы трения
Силы трения Мы не в первый раз говорим о трении. И правда, как можно было, рассказывая о движении, обойтись без упоминания о трении? Почти любое движение окружающих нас тел сопровождается трением. Останавливается автомобиль, у которого водитель выключил мотор,
Силы сопротивления при больших скоростях
Силы сопротивления при больших скоростях Но вернемся к законам «мокрого» трения. Как мы выяснили, при малых скоростях сопротивление зависит от вязкости жидкости, скорости движения и линейных размеров тела. Рассмотрим теперь законы трения при больших скоростях. Но
IV. Откуда же берутся эти силы?
IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис – не более чем конвульсивное размахивание