Как движутся планеты
Как движутся планеты
На вопрос, как движутся планеты, можно ответить кратко: повинуясь закону тяготения. Ведь силы тяготения – единственные силы, приложенные к планетам.
Так как масса планет много меньше массы Солнца, то силы взаимодействия между планетами не играют большой роли. Каждая из планет движется почти так, как это диктует ей сила притяжения одного лишь Солнца, словно других планет и не существует.
Законы движения планеты вокруг Солнца следуют из закона всемирного тяготения.
Впрочем, исторически дело было не так. Законы движения планет были найдены замечательным немецким астрономом Иоганном Кеплером до Ньютона без помощи закона тяготения на основании почти двадцатилетней обработки астрономических наблюдений.
Пути, или, как говорят астрономы, орбиты, которые описывают планеты около Солнца, очень близки к окружностям.
Как связан период обращения планеты с радиусом ее орбиты?
Сила тяготения, действующая на планету со стороны Солнца, равна
где М – масса Солнца, m – масса планеты, r – расстояние между ними.
Но F/m есть, согласно основному закону механики, не что иное, как ускорение, и притом центростремительное:
Скорость планеты можно представить как длину окружности 2?r, поделенную на период обращения T. Подставив v = 2?R/T и значение силы F в формулу ускорения, получим:
Коэффициент пропорциональности перед r3 есть величина, зависящая только от массы Солнца, – одинаковая для любой планеты. Следовательно, для двух планет справедливо соотношение
Отношение квадратов времен обращения планет оказывается равным отношению кубов радиусов их орбит. Этот интересный закон был выведен Кеплером из опыта. Закон всемирного тяготения объяснил наблюдения Кеплера.
Круговое движение одного небесного тела около другого – это лишь одна из возможностей.
Траектории одного тела, вращающегося около другого благодаря силам тяготения, могут быть самыми различными. Однако, как показывает расчет и как еще до всякого расчета было обнаружено Кеплером, все они принадлежат к одному классу кривых, называемых эллипсами.
Если привязать нитку к двум булавкам, воткнутым в лист чертежной бумаги, натянуть нитку острием карандаша и двигать карандашом так, чтобы нитка оставалась натянутой, то на бумаге в конце концов прочертится замкнутая кривая – это и есть эллипс (рис. 68). Места, где находятся булавки, будут фокусами эллипса.
Эллипсы могут иметь различную форму. Если взять нитку много длиннее, чем расстояние между булавками, то эллипс будет очень похож на круг. Напротив, если длина нитки чуть-чуть больше расстояния между булавками, то получится удлиненный эллипс – почти палочка.
Планеты описывают эллипсы, в одном из фокусов которых находится Солнце.
Какие же эллипсы описывают планеты? Оказывается, очень близкие к окружности.
Наиболее отличен от окружности путь ближайшей к Солнцу планеты – Меркурия. Но и в этом случае самый длинный диаметр эллипса всего лишь на 2 % больше самого короткого. Иное дело орбиты искусственных планет. Посмотрите на рис. 69. Орбиту Марса не отличишь от круга.
Однако Солнце находится в одном из фокусов эллипса, а не в его центре, и поэтому расстояние планеты от Солнца меняется сильнее. Проведем линию через два фокуса эллипса – она пересечет эллипс в двух местах. Точку, ближайшую к Солнцу, называют перигелием, наиболее далекую от Солнца – афелием. Меркурий, когда находится в перигелии, в 1,5 раза ближе к Солнцу, чем в афелии.
Главные планеты описывают вокруг Солнца эллипсы, близкие к окружности. Однако существуют небесные тела, которые движутся около Солнца по сильно вытянутым эллипсам. К ним принадлежат кометы. Их орбиты не идут ни в какое сравнение по вытянутости с орбитами планет. Про небесные тела, движущиеся по эллипсам, можно сказать, что они принадлежат к семье Солнца. Однако в нашу систему забредают и случайные пришельцы.
Наблюдались кометы, описывающие около Солнца такие кривые, судя по форме которых можно было сделать вывод: комета не вернется, она не принадлежит к семейству солнечной системы. «Открытые» кривые, описываемые кометами, называются гиперболами.
Особенно быстро движутся такие кометы, когда они проходят около Солнца. Это и понятно – полная энергия кометы постоянна, а подходя к Солнцу, комета имеет наименьшую потенциальную энергию. Значит, кинетическая энергия движения будет в этом случае наибольшая. Конечно, такой эффект имеет место для всех планет и для нашей Земли. Однако эффект этот невелик, так как мала разница потенциальных энергий в афелии и перигелии.
Интересный закон движения планеты вытекает из закона сохранения момента импульса.
На рис. 70 изображено два положения планеты. От Солнца, т.е. от фокуса эллипса, проведены два радиуса к положениям планеты, и образовавшийся сектор заштрихован. Надо определить величину площади, описываемой радиусом за единицу времени. При небольшом угле сектор, описанный радиусом за секунду, можно заменить треугольником. Основание треугольника – скорость v (путь, проходимый за секунду), а высота треугольника равна плечу d скорости. Поэтому площадь треугольника есть vd/2.
Из закона сохранения момента следует постоянство величины mvd во время движения. Но если mvd неизменно, то не меняется и площадь треугольника vd/2. Мы можем начертить секторы для любых моментов времени – они окажутся одинаковыми по площади. Скорость планеты меняется, но то, что можно назвать секториальной скоростью, остается неизменным.
Не все звезды имеют планетное окружение. Довольно много в небе двойных звезд. Два огромных небесных тела вращаются одно около другого.
Огромная масса Солнца делает его центром семейства. В двойных звездах оба небесных тела имеют близкие по величине массы. В этом случае нельзя считать, что одна из двух звезд покоится. Как же происходит движение в этом случае? Мы знаем, что каждая замкнутая система имеет одну покоящуюся (или равномерно движущуюся) точку – это центр инерции. Вокруг этой точки и вращаются обе звезды. При этом они описывают подобные эллипсы, что следует из написанного на стр. 135 условия m1/m2 = r2/r1.
Эллипс одной звезды больше эллипса другой во столько раз, во сколько масса одной звезды больше массы другой (рис. 71). При равных массах обе звезды будут описывать около центра инерции одинаковые траектории.
Планеты солнечной системы находятся в идеальных условиях: они не подвержены трению.
Создаваемые людьми маленькие искусственные небесные тела – спутники – не находятся в таком идеальном положении: силы трения, пусть сначала очень незначительные, но все же чувствительные, решительно вмешиваются в их движение.
Полная энергия планеты остается неизменной. Полная энергия спутника с каждым оборотом слегка падает. На первый взгляд кажется, что трение будет замедлять движение спутника. В действительности происходит обратное.
Вспомним прежде всего, что скорость спутника равна
sqrt(gR) или sqrt(?(M/R)), где R – расстояние от центра Земли, а М – ее масса.
Полная энергия спутника равна:
Подставив значение скорости спутника, найдем для кинетической энергии выражение ?(mM/2R). Мы видим, что по абсолютной величине кинетическая энергия в два раза меньше потенциальной, а полная энергия равна
При наличии трения полная энергия будет падать, т.е. (поскольку она отрицательна) расти по абсолютной величине; расстояние R начнет уменьшаться: спутник снижается. Что при этом произойдет со слагаемыми энергии? Потенциальная энергия убывает (растет по абсолютной величине), кинетическая энергия растет.
Общий баланс все же отрицателен, так как потенциальная энергия убывает вдвое быстрее, чем возрастает кинетическая.
Трение приводит к возрастанию скорости движения спутника, а не к замедлению.
Теперь понятно, почему большая ракета-носитель обгоняет маленький спутник. У большой ракеты трение больше.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
ЭЛЕКТРОНЫ ДВИЖУТСЯ В МЕТАЛЛЕ
ЭЛЕКТРОНЫ ДВИЖУТСЯ В МЕТАЛЛЕ В школьные годы я не испытывал благоговения перед законом Ома. Напротив, мне казалось, что совершенно нет оснований почти самоочевидное утверждение превращать в памятник ученому. Ток пропорционален напряжению! А чему бы ему еще быть
Планеты
Планеты Наблюдения планет не играли существенной роли в Древнем Египте. Единственное свидетельство о подобных наблюдениях содержится в трудах Аристотеля (О небе, II, 12, 292а), где сообщается о получивших известность в Греции египетских наблюдениях соединений планет друг с
Куда движутся звезды
Куда движутся звезды Чем больше ученые изучали свойства света, тем больше свет рассказывал им о тайнах природы. Много труда на изучение свойств света положил астроном А. А. Белопольский.Почти до конца прошлого века астрономы не могли решить вопрос: как узнать, куда
1. Генеалогия планеты
1. Генеалогия планеты А теперь давайте вернемся к основному вопросу. Вы, конечно, догадались, что речь пойдет о рождении Земли. Автор специально отложил его на потом, ибо из всего, с чем мы только что познакомились, вопрос о происхождении нашего мира имеет самую длинную и
46. Почему планеты круглые?
46. Почему планеты круглые? Сила тяжести — универсальная сила притяжения между всеми массами, так что каждый фрагмент большого тела пытается притянуть к себе любой другой фрагмент.Если материал может течь, тело образует сферу. Эта форма гарантирует, что каждый
55 Почему звезды мерцают, а планеты – нет?
55 Почему звезды мерцают, а планеты – нет? Если посмотреть на ночное небо, выехав подальше от освещенных мест, – скажем, на даче или в походе, – то мы увидим тысячи и тысячи переливающихся звезд. Они то вспыхивают поярче, то тускнеют.Почему так происходит?Ответ на этот
Орбита планеты
Орбита планеты По Кип-версии, планета Миллер расположена в области, помеченной на рис. 17.1 синим кольцом, очень близко к горизонту Гаргантюа (см. главу 6 и главу 7). Рис. 17.1. Искривленное пространство вблизи Гаргантюа, вид из балка, одно пространственное измерение
Прошлое планеты Миллер
Прошлое планеты Миллер Интересно порассуждать о прошлом и будущем планеты Миллер[62]. Попробуйте сделать это, призвав на помощь все свои познания в физике, а также информацию из книг и интернета. Предупреждаю, задача не из легких! Вот некоторые вопросы, над которыми
Вид Гаргантюа с планеты Миллер
Вид Гаргантюа с планеты Миллер Когда в фильме «Рейнджер» приближается к планете Миллер, мы видим в небе Гаргантюа, которая занимает 10 градусов обзора (в 20 раз больше, чем Луна, если смотреть на нее с Земли!) и окружена ярким аккреционным диском (рис. 17.9). Как бы
Орбита планеты и отсутствие солнца
Орбита планеты и отсутствие солнца Я определил подходящую для планеты Манн орбиту, руководствуясь двумя киноэпизодами.Во-первых, Дойл говорит, что путешествие к планете Манн займет месяцы. Отсюда вывод: когда «Эндюранс» прибывает к планете Манн, она должна
Взрыв на орбите вокруг планеты Манн
Взрыв на орбите вокруг планеты Манн Такой подход к конструированию корабля приносит свои плоды, когда доктор Манн невольно инициирует сильный взрыв, который размыкает кольцо «Эндюранс», уничтожает два модуля и еще два повреждает (рис. 20.2). Рис. 20.2. Вверху: взрыв
Приливная гравитация: «Эндюранс» улетает от планеты Манн
Приливная гравитация: «Эндюранс» улетает от планеты Манн В Кип-версии орбита планеты Манн сильно вытянута (см. главу 19). Когда «Эндюранс» прибывает к планете, она находится далеко от Гаргантюа, но движется в ее направлении. Взрыв «Эндюранс» (см. главу 20) происходит,