§ 7. Четырехвекторы

Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование х и у, изученное нами в гл. 11, когда мы говорили о вращении координат. Тогда мы получили

(15.8)

т. е. новое х' перемешивает старые х и y, а у' тоже их перемешивает. Подобным же образом в преобразовании Лоренца новое х' есть смесь старых х и t, а новое t' — смесь t и х. Значит, преобразование Лоренца похоже на вращение, но «вращение» в пространстве и времени. Это весьма странное понятие. Проверить аналогию с вращением можно, вычислив величину

В этом уравнении три первых члена в каждой стороне представляют собой в трехмерной геометрии квадрат расстояния между точкой и началом координат (сферу). Он не меняется (остается инвариантным), несмотря на вращение осей координат. Аналогично, уравнение (15.9) свидетельствует о том, что существует определенная комбинация координат и времени, которая остается инвариантной при преобразовании Лоренца. Значит, имеется полная аналогия с вращением; аналогия эта такого рода, что векторы, т. е. величины, составленные из «компонент», преобразуемых так же, как и координаты, оказываются полезными и в теории относительности.

Итак, мы расширим понятие вектора. Пока он у нас мог иметь только пространственные компоненты. Теперь включим в это понятие и временную компоненту, т. е. мы ожидаем, что существуют векторы с четырьмя компонентами: три из них похожи на компоненты обычного вектора, а к ним привязана четвертая — аналог времени.

В следующих главах мы проанализируем это понятие. Мы увидим, что если идеи этого параграфа приложить к импульсу, то преобразование даст три пространственные составляющие, подобные обычным компонентам импульса, и четвертую компоненту — временную часть (которая есть не что иное, как энергия).

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК