Гравитация

В своей общей теории Эйнштейн обновил и концепцию гравитации. Ньютон считал, что раз Земля вращается вокруг Солнца, то между ними должна существовать сила взаимного притяжения. Эйнштейн же показал, что вращение Земли вокруг Солнца можно объяснить через геометрию пространства.

Представим аналогию. Подающий посылает мяч для гольфа катиться по лужайке по направлению к лунке. Мяч ударяется о край лунки и падает в нее. Однако, если он движется слишком быстро, он прокрутится вдоль стенки лунки и выкатится с другой стороны в новом направлении. Он немного покружился вокруг середины лунки, но никто же не предположит на основе этого, что между мячом и серединой лунки есть сила притяжения.

Давайте представим совершенно ровную, лишенную трения поверхность бесконечной протяженности. Мяч, по которому ударяет клюшка, будет вечно катиться по ровной прямой линии.

Но что, если покрытие неровно, если на нем есть кочки и ямки? Траектория мяча, прокатившегося по краю кочки, будет искривлена по направлению от центра ямки. Траектория мяча, прокатившегося по краю ямки, будет искривлена по направлению к центру ямки. Если ямки и кочки по какой-то причине невидимы и обнаружить их невозможно, то нас могут озадачить случайные отклонения шаров от прямолинейного движения. Мы может предположить, что существуют невидимые силы притяжения или отталкивания, толкающие шар туда и сюда.

Предположим, на такой лужайке есть конусообразная ямка с крутыми стенами. Тогда можно представить, что мяч для гольфа принимает замкнутую орбиту по стенкам этой воронки, как бобслей, бесконечно кружащийся по округлой насыпи. Если бы имелось трение, кружащийся шар терял бы кинетическую энергию и мало-помалу упал бы на дно воронки. В отсутствие трения он будет сохранять свою орбиту.

Эйнштейновское понятие о гравитации представляет очень похожую картину. Пространство-время имело бы здесь четырехмерную аналогию плоской лужайки, если бы оно было свободно от материи. Материя же, однако, производит «ямки»; чем более массивна материя, тем глубже «ямка». Земля движется вокруг Солнца, как будто она кружится по краю углубления. Если бы в космосе было трение, она бы медленно сдвигалась к центру «ямки» (то есть по спирали падала бы на Солнце).

В отсутствие трения она неопределенно долго сохраняет свою орбиту. Эллипс, по которому движется Земля, демонстрирует, что ее орбита по краю «углубления» не является совершенно ровной по плоскости четырехмерной площадки (иначе орбита была бы круговой). Небольшой наклон орбиты приводит к небольшой эллиптичности, а больший наклон — к большей эллиптичности. Именно эти «ямки», производимые присутствием материи, привели к понятию об искривленном пространстве.

Выводы из специальной теории относительности, например увеличение массы при движении и эквивалентность массы и энергии, были продемонстрированы без труда. Доказать же действительность общей теории оказалось гораздо труднее. Гравитация, рассматриваемая по Эйнштейну, производит результаты, столь похожие на ту гравитацию, какой ее видел Ньютон, что хочется посчитать обе теории равнозначными, а затем выбрать ту, что проще и больше соответствует «здравому смыслу», а это конечно же ньютоновская.

Однако есть области, где выводы из представлений Эйнштейна действительно несколько отличались от предполагаемых по теории Ньютона. Изучающий эти выводы должен будет выбирать между этими двумя теориями, найдя для этого более удовлетворительную причину, чем простота. Первая из таких областей касается планеты Меркурий.

Различные тела Солнечной системы, по представлениям Ньютона, движутся в соответствии с силами гравитации, которым они подвергаются. Каждое тело подвергается силе притяжения со стороны всех других тел во Вселенной, так что точно и полностью рассчитать движения любого тела вряд ли возможно. Однако в Солнечной системе сильнее всего воздействует гравитационное поле Солнца. Гравитационные поля нескольких других тел, находящихся близко к рассматриваемому телу, тоже имеют значение, но оно невелико.

Если учесть и их, то движение планет Солнечной системы может быть объяснено с достаточной степенью точности. Если, несмотря на это, все же существуют расхождения между рассчитанным и реальным движением, остается допустить, что имеется еще какое-то неучтенное гравитационное воздействие.

Например, присутствие расхождений в орбите Урана привело к поиску упущенного гравитационного воздействия и к открытию в середине XIX века планеты Нептун.

Во время открытия Нептуна изучалось также расхождение в движении Меркурия, ближайшей к Солнцу планеты. Как и другие планеты, Меркурий движется по эллиптической орбите вокруг Солнца, где Солнце находится в одном из фокусов эллипса. Это означает, что планета не всегда находится на одном расстоянии от Солнца. На его орбите есть точка, в которой он наиболее близок к Солнцу, — перигелий, и точка на противоположном конце орбиты, на которой он наиболее далек от Солнца, — афелий. Соединяющая их линия называется главной осью. Меркурий не повторяет своей орбиты в точности, но двигается таким образом, что орбита получается как бы в форме розетки, и главная ось эллипса медленно вращается.

Это могло бы быть объяснено влиянием гравитации ближайших к Меркурию планет, но не полностью. После того как были приняты во внимание все известные гравитационные воздействия, угол, на который действительно поворачивалась главная ось (и две ее крайние точки — перигелий и афелий), оставался чуть больше, чем должен был бы быть, — больше на 43,03 секунды за столетие. Это означало, что главная ось орбиты Меркурия делала полный — и необъяснимый — поворот за 3 000 000 лет.

Леверье, один из первооткрывателей Нептуна, предположил, что между Меркурием и Солнцем находится неоткрытая планета и что воздействие гравитации этой планеты на Меркурий могло привести к этому дополнительному движению перигелия. Однако планета так и не была обнаружена, и, даже если бы она существовала (или если бы пояс планетоидов равной массы существовал бы вблизи Солнца), гравитационное воздействие оказывалось бы также на Венеру, а этого не было обнаружено.

Ситуация оставалась загадочной еще семьдесят лет, пока Эйнштейн в 1915 году не объявил, что общая теория относительности изменила взгляд на гравитацию ровно настолько, чтобы ввести дополнительный фактор, который мог бы просчитать необъяснимую часть движения перигелия Меркурия. (Должно иметь место такое же, но гораздо более слабое воздействие на планеты, находящиеся дальше от Солнца, — слишком маленькое, чтобы его можно было точно определить.)

Эйнштейн также предсказал, что гравитация должна влиять на лучи света, что отсутствовало в ньютоновских воззрениях. Свет звезд, проходящий очень близко от Солнца, например, подвергался бы влиянию геометрии пространства и изгибался бы по направлению к центру Солнца. Наши глаза следовали бы за лучом света, мысленно продолжая его новое направление, и мы видели бы звезду дальше от центра Солнца, чем она находится на самом деле. Это воздействие очень мало. Даже если свет проходил у самого края Солнца, видимое положение звезды сдвигалось бы всего на 1,75 секунды, а если свет проходил дальше от Солнца, сдвиг положения звезды был бы еще меньше.

Конечно, свет звезд, проходящий около Солнца, нельзя наблюдать обычным путем, разве что на протяжении нескольких минут во время полного затмения. В то время, когда была опубликована общая теория, шла Первая мировая война и ничего нельзя было сделать. Однако в 1919 году война была окончена и можно было наблюдать полное затмение с острова Принцип в Гвинейском заливе у берегов Западной Африки. Под британским покровительством на остров была выслана исследовательская экспедиция со специальной целью — проверить общую теорию.

Исследователи замерили положение близких к Солнцу звезд и сравнили с их положением полгода спустя, когда Солнце находилось на другом конце неба. Результаты исследований подтвердили общую теорию.

В конце концов теория Эйнштейна предсказала, что свет должен терять энергию, если он движется против гравитации, и приобретать ее, если «падает», так же как и любой обычный предмет; у предмета, например у мяча, эта потеря энергии будет выражаться в потере скорости. Однако свет может двигаться только с одной скоростью; следовательно, потеря энергии будет выражаться у него в уменьшении частоты и увеличении длины волны. Так, исходя из звезды, свет будет подвергаться небольшому «красному смещению» по мере потери энергии. Но это воздействие так мало, что его нельзя измерить.

Однако недавно были обнаружены такие звезды (белые карлики), которые обладают невероятной плотностью и гравитационное поле которых в тысячи раз сильнее, чем поле обычных звезд. Покидая такую звезду, свет теряет достаточно энергии, чтобы его спектральные линии демонстрировали отчетливое красное смещение. В 1925 году американский астроном Уолтер Сидни Адамс (1876–1956) смог изучить спектр белого карлика — звезды, парной звезде Синус, и подтвердить это предсказание Эйнштейна.

Общая теория относительности, таким образом, одержала три победы над прежними воззрениями на гравитацию, но все это были астрономические победы. Только в 1960 году общая теория была привнесена в лабораторную работу.

Ключ к этой лабораторной демонстрации обнаружил в 1958 году немецкий физик Рудольф Людвиг Моссбауэр (р. 1929), показавший, что при определенных обстоятельствах можно сделать кристалл, испускающий пучок гамма-лучей[96] одинаковой длины волны. Гамма-лучи такой длины волны могут поглощаться кристаллом, похожим на тот, которым были произведены. Если гамма-лучи имеют хоть немного отличную длину волны, они не будут поглощаться. Это называется эффектом Моссбауэра.

Итак, если такой пучок гамма-лучей испускается вниз так, что он «падает» по направлению гравитации, он набирает энергию и длина его волны становится короче — если общая теория относительности верна. Падая всего лишь на сотню футов, он должен набрать достаточно энергии, чтобы длина волны гамма-лучей уменьшилась, хотя и очень незначительно, но достаточно для того, чтобы второй кристалл уже не поглощал этот пучок.

Более того, если испускающий гамма-лучи кристалл движется вверх во время испускания, то длина волны гамма-луча возрастает благодаря эффекту Допплера — Физо. Скорость, с которой кристалл движется вверх, может быть настроена ровно таким образом, чтобы нейтрализовать воздействие гравитации на падающий гамма-луч. Тогда гамма-луч опять будет поглощен кристаллом. Проводившиеся в 1960 году эксперименты с большой точностью подтвердили общую теорию относительности, но это была еще не самая впечатляющая демонстрация ее верности.

Неудивительно, что релятивистский взгляд на Вселенную теперь является общепринятым (по крайней мере, до следующего уточнения) среди физиков всего мира.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК