Абсолютное движение

Если свет — это форма волны, то большинству ученых вплоть до начала XX века казалось логичным, что что-то должно колебаться, передавать эту волну. В случае волн на воде, к примеру, вверх и вниз движутся молекулы воды; в случае звуковых волн вперед и назад двигаются атомы или молекулы окружающей среды. Соответственно, казалось, что в вакууме должно что-то существовать, что-то, что двигалось бы вверх и вниз или вперед и назад, чтобы проводить волны света.

Это что-то не оказывает сколько-нибудь заметного влияния на движение небесных тел, поэтому логично было предположить, что это чрезвычайно разреженный газ. Этот чрезвычайно разреженный газ (или нечто иное, что заполняет вакуум) получил название «эфир», от слова, которое использовал Аристотель для описания вещества, из которого состоят небеса и небесные тела (см. ч. I). Эфир может быть также средой, в которой передается сила гравитации, и может быть идентичен эфиру, который проводит (или не проводит) свет. Для того чтобы выделить эфир, именно проводящий свет (на случай, если существуют несколько разновидностей эфира), в XIX веке было введено популярное словосочетание «люминофорный (что означает «светоносный») эфир».

Когда мы начинаем говорить об эфире, разница в свойствах между поперечными и продольными волнами становится важной. Продольные волны могут передаваться в среде, находящейся в любом состоянии — твердом, жидком или газообразном. Поперечные же волны могут передаваться только в твердых телах или при наличии гравитационного поля по поверхностям жидкостей (см. ч. I). Поперечные волны не могут проходить через массу газа или жидкости. Именно по этой причине в ранних версиях волновой теории света, в соответствии с которыми эфир считался газом, также считалось, что свет состоит из продольных волн, которые могут проходить через газ, а не из поперечных, которые не могут.

Однако когда вопрос о поляризации, казалось, твердо установил тот факт, что свет состоит из поперечных волн, концепцию эфира пришлось кардинально пересмотреть. Для того чтобы пропускать поперечные световые волны, эфир должен быть твердым телом; он должен быть веществом, все частицы которого жестко закреплены на своем месте.

Если бы это было так, то, когда участок эфира подвергался бы искажению под правильным углом по направлению от движения светового луча (как требовалось бы, если бы свет являлся поперечно-волновым явлением), силы, держащие этот участок на месте, толкнули бы его обратно. Этот участок пролетел бы свое прежнее место, его бы толкнуло назад, он бы снова пролетел свое законное место и т. д. (Именно так происходит в случае волн на воде, когда гравитация является той силой, которая обеспечивает толкание взад-вперед, а в случае звуковых волн эту работу проделывают межмолекулярные силы.)

Так, колебания эфира вверх-вниз и создают световую волну. Более того, скорость, с которой поперечная волна проходит сквозь среду, зависит от размера силы, толкающей обратно сдвинутую область. Чем больше сила, тем быстрее толчок обратно, тем быстрее движется волна. В случае света, движущегося со скоростью 186 000 миль в секунду, обратный толчок должен быть действительно сильным, и сила, удерживающая каждую часть эфира на месте, должна быть гораздо жестче, чем сталь.

Следовательно, светоносный эфир должен быть одновременно и чрезвычайно разреженным газом, и иметь жесткость выше, чем сталь. Такую комбинацию сложно представить[90], но в середине XIX века физики упорно работали, чтобы создать последовательную модель такого «твердого газа» и обнаружить его наличие. Они делали это по двум причинам. Во-первых, они не видели альтернативы, раз свет состоит из поперечных волн. Во-вторых, эфир был нужен им в качестве точки отсчета для измерения движения. Эта вторая причина чрезвычайно важна, потому что в отсутствие такой точки отсчета сама идея движения теряет четкость и все физические построения XIX века становятся зыбкими.

Чтобы объяснить, почему это происходит, давайте предположим, что вы находитесь на поезде, движущемся с постоянной скоростью по абсолютно прямым рельсам без вибрации. Обычно вы можете сказать, едет поезд или стоит, по наличию вибрации или по воздействию инерции, когда поезд ускоряется, тормозит или поворачивает. Однако, если поезд движется равномерно и без вибрации, все эти факторы устранены и обычные методы определения наличия движения становятся бесполезными.

Теперь представим, что в поезде есть окно, в которое вы видите другой поезд на соседних рельсах. В другом поезде тоже есть окно, и в него кто-то на вас смотрит. На языке жестов он спрашивает вас: «Мой поезд движется?» Вы смотрите на него, ясно видите, что он не движется, и отвечаете: «Нет, он стоит на месте». Тогда он выпрыгивает и разбивается насмерть, потому что оказывается, что оба поезда движутся в одном и том же направлении со скоростью 70 миль в час по отношению к поверхности Земли.

Поскольку оба поезда движутся в одном и том же направлении на одной и той же скорости, они не меняют положения по отношению друг к другу, и каждый кажется недвижимым наблюдателю из другого. Если бы в каждом из поездов было по окну с другой стороны, можно было бы посмотреть на пейзаж и увидеть, что он несется навстречу поезду. Поскольку мы автоматически признаем, что пейзаж не движется, мы делаем очевидный вывод, что на самом деле движется поезд, несмотря на то что кажется, что это не так.

Опять же предположим, что, наблюдая второй поезд, вы замечаете, что он движется назад со скоростью две мили в час. Вы сообщаете эту информацию человеку из другого поезда. Он резко возражает. Он настаивает на том, что он стоит на месте, а вы движетесь вперед со скоростью две мили в час. Кто из вас прав?

Чтобы принять решение, надо свериться с окружающим пейзажем. Тогда может оказаться, что поезд А не движется, а поезд В действительно движется вперед со скоростью две мили в час. Или что поезд В не движется, а поезд А движется со скоростью две мили в час. Или что поезд А движется вперед со скоростью одна миля в час, а поезд В движется назад со скоростью одна миля в час. Или что оба поезда движутся вперед: поезд А со скоростью 70 миль в час, а поезд В — со скоростью 68 миль в час. Количество возможных вариантов по отношению к поверхности Земли бесконечно, и все они могут соответствовать наблюдаемому движению поезда А и поезда В относительно друг друга.

Имея обширный опыт передвижения на поездах, люди научились не придавать большого значения движению поездов относительно друг друга. Только движение поездов относительно поверхности Земли принято считать «настоящим»

Но так ли это? Предположим, что человек в поезде, мягко едущем по прямому участку рельсов со скоростью 70 миль в час, роняет монету. Он видит, как монета падает по прямой на пол поезда. Человек, стоящий в стороне от дороги и видящий, как поезд проезжает и как падает монета, увидит, что монета проделывает движение двух видов: она падает вниз с увеличивающейся скоростью из-за силы гравитации и одновременно вместе с поездом движется вперед. Общее воздействие двух видов движения сказывается в том, что монета движется по параболе (см. ч. I).

Мы делаем вывод, что монета движется по прямой по отношению к поезду и по параболе по отношению к Земле. Так какое же движение истинно? По параболе? Человек в поезде, уронивший монету, может быть готов поверить, что, хотя ему и кажется, что он стоит на месте, «на самом деле» он движется со скоростью 70 миль в час. Но он будет не совсем готов поверить, что монета, которую он видит движущейся по прямой, «на самом деле» движется по параболе.

Это очень важный момент в научной философии. Первый закон движения Ньютона (см. ч. I) утверждает, что предмет, к которому не прилагается внешних усилий, движется по прямой с постоянной скоростью. Однако то, что кажется прямой линией одному наблюдателю, не обязательно покажется прямой линией другому. В этом случае, что же означает первый закон Ньютона? Что такое прямолинейное движение, как таковое?

В древности и Средневековье почти все ученые считали, что Земля расположена в центре Вселенной и никогда не сдвигалась с этого места. Тогда Земля действительно не двигалась с места. Она находилась (как считалось) в состоянии абсолютного покоя. Любое движение могло измеряться по отношению к такой точке абсолютного покоя. Это абсолютное движение было бы «истинным» движением, с которым согласились бы все наблюдатели. Разница между любым наблюдаемым движением и абсолютным движением проистекала из абсолютного движения наблюдателя.

Конечно, вопросы о том, действительно ли Земля неподвижна, поднимались даже в древности. Звезды, казалось, движутся вокруг Земли за 24 часа с постоянной скоростью. Стоит ли Земля на месте, а небесная сфера вращается, или, наоборот, небесная сфера стоит на месте, а Земля вращается? Проблема выглядела так же, как и вопрос о двух поездах, движущихся относительно друг друга, где проверить «реальность» движения невозможно, не поглядев на пейзаж. Когда же речь шла о Земле и небесной сфере, не было никакого пейзажа, к которому можно было бы обратиться, чтобы быстро принять решение, с которым все бы согласились.

Большинство людей считали, что вращалась именно небесная сфера, потому что в это легче поверить, чем в то, что это огромная Земля вращается, да так, что мы не можем этого почувствовать. (Мы все еще говорим о Солнце, Луне, планетах и звездах, что они «восходят» и «садятся».) Однако в современности по ряду причин, описание которых уместно скорее в учебнике по астрономии, стало более удобным полагать, что Земля вращается, чем что она стоит на месте.

В таком случае если Земля как целое не находится в абсолютном покое, то, может быть, не движется ее ось? Однако к началу Нового времени все больше и больше астрономов приходили к уверенности, что даже ось Земли не неподвижна. Земля — вся, целиком — носится как угорелая вокруг Солнца вместе с другими планетами. Ни одна часть ее не находится в большем покое, чем любой поезд, мчащийся по ее поверхности. Поезд может двигаться равномерно по отношению к поверхности Земли, но это не будет «истинное» движение поезда.

Пару веков после того, как было признано движение Земли, еще оставалась возможность верить в то, что центром Вселенной может быть Солнце. Оно очевидно вращалось, потому что пятна на его поверхности двигались по кругу с периодом около 27 дней. Однако ось Солнца все еще могла находиться в том самом вожделенном состоянии абсолютного покоя.

К сожалению, становилось все яснее по мере приближения XIX века, что Солнце — лишь звезда среди прочих и что оно движется среди звезд. На самом деле сейчас мы знаем, что так же, как Земля движется вокруг Солнца с периодом в один год, Солнце движется вокруг центра нашей Галактики с периодом в 200 000 000 лет. И разумеется, наша Галактика — лишь одна среди прочих галактик и, должно быть, движется по отношению к другим.

К середине XIX века появилась серьезная причина полагать, что ни один материальный объект где-либо во Вселенной не представлял собой состояния абсолютного покоя и что абсолютное движение поэтому не может быть измеренным ни для одного материального объекта. Это могло привести к ужасному сомнению в применимости ко Вселенной законов Ньютона, на которых была основана вся физика XIX века. Однако не обязательно иметь материальный объект для установления абсолютного движения.

Физикам XIX века казалось, что если пространство заполнено эфиром, то логично было бы предположить, что этот эфир служит только для передачи сил, таких как сила притяжения, и сам по себе вообще не подвергается их воздействию. В таком случае его невозможно вовлечь в движение. Он может колебаться туда-сюда, как при передаче световых волн, но в целом двигаться не будет. В таком случае эфир следует рассматривать находящимся в абсолютном покое. Все движение становилось абсолютным движением, если измерять его по отношению к эфиру. Это пространство, заполненное эфиром, одно и то же для всех наблюдателей, отстраненное, неизменное, недвижимое, пересекаемое телами и силами, не подвергаясь их воздействию, пассивное вместилище материи и энергии и есть абсолютное пространство.

Во времена Ньютона и еще два столетия спустя не было способа измерить движение какого-либо материального тела по отношению к эфиру. Однако это не имело значения. В принципе абсолютное движение считалось существующим вне зависимости от того, можно ли было его измерить или нет, и законы движения принято было считать действительными в рамках этого абсолютного движения, а следовательно, они должны действовать и на все виды относительного движения (которые являлись не более чем суммой двух абсолютных движений).

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК