Музыкальная шкала
В музыкальных инструментах звуки различной высоты тона могут быть воспроизведены посредством удара или щипка за струны различной длины и толщины, как это делается на фортепьяно или арфе, или, как в случае со скрипкой, используя немного струн, но изменяя их эффективную длину, зажимая пальцем один конец струны в различных точках, или позволяя звуковой волне заполнять трубки, которые могут удлиняться или сокращаться в зависимости от положения руки исполнителя, как это делается в тромбоне; или закрывая и открывая дополнительные объемы в трубке, закрывая отверстие пальцем, как во флейте, или нажимая на вентиль, как в трубе.
Когда на каком-либо инструменте берутся две ноты вместе или одна за другой, их комбинация кажется нам иногда приятной, а иногда — неприятной. Это, конечно, вопрос очень субъективный, к тому же основанный на культурном наследии слушателя, поскольку мы любим то, к чему мы привыкли, и множество типов музыки, начиная от рок-н-ролла и кончая, например, традиционной японской, могут показаться неприятными для непосвященного, но весьма нравятся их приверженцам. Однако если мы ограничимся рассмотрением «серьезной» классической западной музыки, то мы можем прийти к некоторым обобщениям и заключениям относительно ее.
Если две ноты прозвучали вместе, то результатом этого не являются два раздельных ряда звуковых волн, каждый из которых путешествует сквозь воздух независимо от другого, — мы имеем результирующую волну, которая произошла от сложения двух волн вместе.
Чтобы еще упростить, предположим, что мы каким-то образом создали две звуковых волны, каждая из которых одной и той же частоты, но звучит таким образом, что отстает от другой на половину длины волны. Всякий раз, когда одна звуковая волна формирует область сжатия в одной точке, другая — формирует там же область разрежения, и наоборот. Два эффекта взаимоуничтожают друг друга, и воздух не двигается. В результате взятые вместе два звука производят тишину; такое явление называется «интерференцией». Трудно представить это себе, если мы говорим о продольных волнах. Однако если изобразить продольные волны как аналогичные им поперечные волны (поскольку для данной цели такая замена вполне приемлема), то интерференцию достаточно легко изобразить. Во всех случаях, когда синусоида одной звуковой волны идет вверх, синусоида другой звуковой волны идет вниз, и если сложить эти два участка, то в результате мы получим ровную линию, то есть никакой волны вообще.
С другой стороны, если две волны одной и той же частоты звучат точно в фазе, они складываются друг с другом, так что сжимаемые области еще больше сжимаются, а разрежаемые области разрежаются еще больше, чем это бы было, если бы любой из этих звуков воспроизводился в одиночку. На аналогичной поперечной волне гребни и впадины отдельных волн совпадают и суммарные гребни будут выше, а впадины глубже, чем у любой из них. Наше ухо услышит один звук той же высоты тона, но более громкий. Это явление называется «укреплением» (reinforcement)[53].
На самом деле полная интерференция, или укрепление, маловероятна. Вместо этого две или более волн объединяются, укрепляясь здесь, уменьшаясь там, и в результате формируют окончательные образцы очень сложной формы, которая нисколько не будет походить на периодические синусоидальные волны ни одной из исходных нот. Однако сколь сложными бы эти образцы ни были, они останутся периодическими. То есть если взять небольшой повторяющийся отрезок из части образца, то повторением этого отрезка можно составить весь образец целиком.
В 1807 году французский физик Жан Батист Жозеф Фурье (1768–1830), изучая общие формы волны, показал, что любой периодический образец волны, каким бы сложным он ни казался, может быть разложен соответствующими математическими методами на составляющие его синусоидальные волны. Такие математические методы получили название «гармонический анализ», поскольку их можно применять по отношению к музыкальным звукам. (Образцы волн музыкальных звуков составлены из отдельных синусоидальных волн, которые демонстрируют организованный набор взаимосвязей. В тех случаях, когда этого не происходит, то есть когда составляющие синусоидальные волны выбираются и объединяются хаотически, результатом является не музыка, а «шум». Разница аналогична той, что существует между сложной, но правильно организованной геометрической фигурой и набором тех же линий, но начерченных случайным образом, — в последнем случае мы получаем обыкновенные каракули. Однако методы, разработанные Фурье, могут использоваться и для анализа образцов шумовых волн, поэтому для обозначения их часто употребляют более нейтральный термин — «волновой анализ».)
Давайте ограничимся рассмотрением очень простых примеров и не будем вовлекать сложные математические вычисления. Рассмотрим две ноты различной высоты тона, а потому — различной частоты, звучащие вместе. Сжатые области звуковой волны (или гребни, если мы будем говорить в более легко визуализируемых аналогиях поперечной волны) двигаются с более короткими интервалами — в случае ноты с более высокой частотой, а значит, они настигнут таковые звуковой волной с более низкой частотой.
Предположим, что одна нота имеет частоту 250 раз в секунду, а другая нота — частоту 251 раз в секунду, и предположим, что они начинают звучание в фазе. Первый гребень появляется одновременно у обеих нот. Второй гребень у ноты 251/с появляется только чуть-чуть раньше, чем второй гребень у ноты 250/с. Третий гребень появляется еще раньше, а четвертый гребень — раньше, чем третий. Однако в конце первой секунды и одна и другая ноты закончили точно 250 и 251 колебание соответственно. Они опять в фазе, но нота 251/с получает в каждую секунду один полный дополнительный гребень[54]. И за каждую следующую секунду нота 251/с получает еще один новый дополнительный полный гребень.
В точке, где две ноты находятся в фазе, гребень к гребню, имеется короткий период полного укрепления, и нота звучит громко. По мере прохождения секунды и падения гребней они все более и более выходят из фазы, то есть интерференция все более и более увеличивается, а звук становится более тихим. В полуминутной точке, на полпути между двумя синфазными периодами, ноты полностью выходят из фазы и гребень одной располагается напротив впадины другой ноты; в этой точке имеется короткий период полной интерференции. Результатом ее является полное затухание и пропадание звука, причем периодичность затухания происходит с интервалом, следующим за тем, когда гребни совпадают. Такое периодическое изменение громкости, когда две ноты звучат вместе, называется «биением».
Давайте рассмотрим еще две ноты с частотами 250/с и 252/с соответственно. Тогда после половины секунды одна нота закончит 125 колебаний, а другая — 126 колебаний, и они возвратятся в фазу, соответствующую гребню. Это будет повторяться каждую половину секунды, то есть будут получаться два биения в секунду. Число биений в секунду, в случае одновременного звучания двух нот, равно разности в частоте этих двух нот.
Если биения настольно редкие, что их можно различимо услышать, то они создают звуковые комбинации, неприятные для слуха. Наиболее неприятным является, очевидно, 30 биений в секунду. Однако в том случае, когда число биений в секунду больше 60, они взаимопроникают друг в друга, и для человеческого уха их комбинация кажется приятной или гармоничной.
Теперь давайте рассмотрим две ноты, у которых одна имеет частоту точно в два раза больше другой. Например, первая имеет частоту 220/с, а вторая — 440/с; отношение частот равно 1:2. Число биений, когда ноты звучат вместе, равно 440—220, или 220 раз в секунду. Биения дублируют ноту более низкого тона, так что кажется, что две ноты «сплавляются» друг с другом и начинают представлять собой одну и ту же ноту. Они гармонируют друг с другом.
Именно Пифагор был первым, кто заметил, что гармонирующие ноты связаны между собой целочисленными отношениями небольшой величины. У него не было никакой аппаратуры для непосредственного измерения самой частоты, но он рассмотрел струны различной длины. Он обнаружил, что две струны с длинами, относящимися как 1:2, производят приятную комбинацию, так же как струны с соотношением длин 2:3 и 3:4.
(Результаты этих наблюдений за звуком были истолкованы Пифагором с мистической точки зрения. Он рассматривал роль взаимодействия небольших целочисленных отношений в создании благозвучий в соответствии со своими взглядами о том, что вся Вселенная управляется числами. Он и его ученики предполагали, что и сами планеты способны создавать звуки — так называемую «музыку сфер», ноты в которой основаны на их расстояниях относительно Земли. Наука не могла освободиться от этих заблуждений в течение 2000 лет.)
Предположим тогда, что мы начинаем с ноты, частота которой равна 440/с (стандартная частота для музыкантов); назовем эту ноту А. Нота вдвое большей частоты звучит настолько подобно этой, что мы можем предположить, что это — тоже А, то есть мы можем использовать эту букву для обозначения ноты с частотой, равной половине А. Таким образом, фактически мы получим целый ряд значений такого А, с частотами, равными 110/с, 220/с, 440/с, 880/с, 1760/с и так далее, расширяя диапазон, из которого мы выбираем, на неопределенное значение вверх и вниз.
Между любыми двумя последовательными нотами А мы можем поставить другие ноты с частотами, которые состоят в некоторых других последовательных арифметических отношениях к нотам А и друг к другу. Общепринято подставлять в этот интервал шесть других нот; они обозначаются буквами В, С, D, Е, F и G. Таким образом, в интервале от А до А мы имеем ноты: А, В, С, D, E, F, G, А. В интервале от А до А располагаются восемь нот (считая и А), между которыми находятся семь интервалов. Поэтому интервал от А до А называется октавой (от латинского слова, означающего «восьмой».) Другие интервалы называются по-английски. Интервал от С до G (С, D, E, F, G), который включает в себя пять нот, называется «пятым», в то время как интервал от С до F — «четвертым». В нашей стране, да и во всем остальном мире, кроме США, общепринята латинская система обозначения музыкальных интервалов. Согласно ей сама нота С (представляющая собой интервал от себя до себя) называется «прима», интервал от С до D называется «секунда», от С до Е — «терция», от С до F — «кварта», от С до G — «квинта», от С до А — «секста», от С до В — «септима» и, наконец, от С до С — «октава». (Все названия музыкальных интервалов происходят от латинских слов, означающих соответственно: «первый», «второй», «третий», «четвертый», «пятый», «шестой», «седьмой» и «восьмой». — Пер.)
Частоты, соответствующие нотам, в диапазоне от А (220/с) до А (880/с):
А = 220 А = 440 А = 880 В = 247,5 В = 495 С = 264 С = 528 D = 297 D = 594 Е = 330 Е = 660 F = 352 F = 704 G = 396 G = 792Диапазон от 220/с до 440/с составляет одну октаву, а диапазон от 440/с до 880/с — другую октаву. Каждая нота в верхней октаве представляет собой удвоенную по частоте соответствующую ноту в более низкой октаве, так что интервал от В до В представляет собой октаву, так же как интервал от С до С, от D до D и так далее. Если вы запомните, что удвоение частоты создает ноты для каждой следующей более высокой октавы, а деление пополам — ноты для каждой более низкой октавы, вы сможете написать частоты для любой ноты в любой октаве.
Если мы послушаем ноты, идущие последовательно в пределах любой октавы, то обнаружим, что они звучат точно так же, как соответствующие ноты в пределах любой другой октавы: выше или ниже. Стандартная клавиатура фортепьяно охватывает диапазон немногим более семи октав; если мы будем нажимать одну за другой белые клавиши, то легко обнаружим, что одна и та же «мелодия» последовательно будет повторяться семь раз, только переходя на все более высокие тоны звуков.
Все частоты связаны между собой отношениями, которые могут быть выражены в небольших целых числах. Отношение G к С, например, равно 396:264, или 3:2; а отношение F к С равно 352:264, или 4:3. Именно эти простые отношения изучал Пифагор, и именно простота отношений обосновывает величину биений, при которых ноты «укрепляются» и хорошо «смешиваются» между собой. Именно поэтому квинты (3:2) и кварты (4:3) очень часто используются для построения благозвучных интервалов между последовательными нотами.
Таблица распределения интервалов по октаве
Но тогда также и отношения между тремя нотами (сочетание которых называется «основным трезвучием» или «аккордом»), С, Е и G, равное 264:330:396, или 4:5:6, будет благозвучным. F, А и С также составляют мажорное трезвучие, так же как и G, В и D. Фактически интервалы между нотами задуманы таким образом, что каждая нота может быть частью одного из этих трех мажорных трезвучий[55].
Если мы рассмотрим отношение частот смежных нот, то оказывается, что В:А относится как 9:8. Отношения между D и С, так же как и G:F, равны 9:8. Отношения E:D и A:G — не совсем такие же, но очень близки — 10:9. Другими словами, из семи интервалов между нотами в пределах одной октавы пять имеют примерно равный размер; мы можем назвать их «целыми интервалами».
Частотное отношение F:E, однако, является только половинкой, поскольку оно равно 352:330, или 16:15; это также истинно и для отношения С:В. (Более просто можно объяснить это другими словами. Отношение 9:8 представляет собой увеличение в частоте на 12,5 процента, а отношение 10:9 представляет собой увеличение на 11,1 процента. Однако отношение 16:15 представляет собой увеличение только на 6,7 процента.) То есть при переходе от В к С или от Е к F мы преодолеваем только «половину интервала»[56].
Если мы начнем с А и будем подниматься по октаве вверх через ноты В, С и так далее, то мы будем проходить интервалы в следующем порядке: тон, полутон, тон, тон, полутон, тон, тон, тон, полутон, тон, тон, полутон и так далее. Полутона последовательно отделены двумя целыми тонами, затем — тремя целыми тонами, двумя тонами, тремя тонами и так далее.
Когда мы поем гамму, используя традиционные имена для нот (до, ре, ми, фа, соль, ля, си, до), благодаря многовековой привычке мы настаиваем на размещении полутоновых интервалов между ми и фа и между си и до. Любая другая последовательность кажется нам звучащей неправильно. Таким образом, мы хотим, чтобы семь интервалов октавы располагались по следующему образцу: тон, тон, полутон, тон, тон, тон, полутон. Если вы посмотрите назад, то увидите, что такая специфическая последовательность может существовать, только если мы начинаем гамму с ноты до, то есть до на ноте С (на которой из С — не имеет никакого значения). Тогда ре становится D, ми — Е, фа — F, соль — G, ля — А, си — В и снова до становится С. Малый интервал «ми — фа», в котором расстояние между нотами равно полутону, переписывается в EF, а интервал «си — до», в котором расстояние равно тому же полутону, соответствует ВС. Расположение нот, которые вы поете, теперь соответствует последовательным нотам, из которых состоит октава, если начинать ее с С и играть на белых клавишах фортепьяно. Если вы начнете играть ноты на любой другой клавише, кроме С, и будете нажимать последовательно белые клавиши, то и фортепьяно, и вы будете извлекать полутона в непривычных местах, а потому — звучание (фортепьяно, конечно, а не ваше) будет казаться вам ужасным.
Желательно быть способным играть гамму от любой точки на клавиатуре фортепьяно, например, для того, чтобы приспособить диапазон фортепьяно к конкретному человеческому голосу. По этой причине в каждую октаву вставлены пять черных нот, расстояния между «белыми» клавишами и «черными» клавишами равны одному полутону, что позволяет разбить любую октаву на пять больших интервалов. Это позволяет нам сохранить привычную последовательность двух (CD, DE) и трех тонов (FG, GA, АВ) — тон, тон, полутон, тон, тон, тон, полутон — по всей клавиатуре. Теперь можно начинать играть гамму с любой клавиши фортепьяно, не важно — с черной или с белой; не забывайте только выбирать ноты тщательно и нажимать иногда черную, а иногда белую. И только если вы начинаете с С, вы можете сыграть всю гамму, всего лишь нажимая последовательно белые клавиши.
Именно по той причине, что С оказывается естественной до, игра в «ключе С» является самой простой для начинающих (главным образом — только белые клавиши). До первой октавы[57] является специфической нотой, которая находится примерно в середине клавиатуры фортепьяно, частота этой ноты равна 264/с[58].
Клавиатура фортепьяно
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК