Пион
Хотя мюон и не оказался частицей Юкавы, ее все равно нужно было продолжать искать. В 1947 году английский физик Сесил Пауэлл (1903–1969) поместил в Андах (Боливия) фотопластинки и с их помощью обнаружил среди космических лучей следы мезонов. Эти мезоны были намного тяжелей мезонов Андерсона: их масса была в 273 раза больше массы электрона. Почти как у юкавских частиц.
Оказалось, что они активно взаимодействуют с атомными ядрами, как и должны себя вести юкавские частицы. Частица нового мезона несла положительный заряд, а античастица — отрицательный, как и частицы Юкавы. В конце концов удалось обнаружить и нейтральную разновидность этого мезона, масса которой была чуть ниже массы заряженных частиц (масса незаряженного мезона в 264 раза больше массы электрона).
Новый мезон получил название пи-мезон, или пион. Пион — это и есть та самая частица обмена, о которой говорил Юкава. Нейтроны и протоны состоят из облаков пионов, что было доказано в 1950-х годах Робертом Хофстедтером. Для этого ученый провел бомбардировку нейтронов и протонов электронами, разогнанными в линейном ускорителе до 600 Мэв. Рассеиваясь, электроны проходили сквозь протон, пробивая внешнее облако пионов[143].
Спин пионов отличается от спина других частиц. Значение спина большинства частиц, о которых мы говорили выше, — нейтрино, электрона, мюона, протона и нейтрона, а также их античастиц — равно ?. Частицы с таким нецелочисленным спином ведут себя согласно статистике Ферми — Дирака (математическому анализу, проведенному Ферми и Дираком), почему и получили общее название ферм ионы. Главное отличительное свойство всех фермионов — подчинение правилу запрета (см. гл. 5).
Спин фотона равен 1, а гравитона — 2. Эти и другие частицы с целочисленным спином, включая атомные ядра ряда элементов, ведут себя согласно статистике Бозе — Эйнштейна, разработанной Эйнштейном и индийским физиком Бозе (1904–1974). Такие частицы называются бозонами. Бозоны не подчиняются принципу запрета.
Из всех открытых частиц первыми отдельными частицами, спин которых равнялся 0, и первыми бозонами, обладающими массой, стали пионы.
Легкость, с которой пион вступает в реакцию с ядерными частицами, — яркий пример сильного взаимодействия реакции, характеризующегося высокой скоростью ее протекания. Движущийся практически со скоростью света пион находится в непосредственной близости от протона или нейтрона всего 10–23 с, однако этого времени вполне достаточно для сильного взаимодействия. Именно сильное взаимодействие удерживает микрочастицы внутри ядра, вопреки силам электромагнитного отталкивания.
Впрочем, существует и другой тип взаимодействия субатомных частиц, для начала которого необходимо гораздо больше времени — не менее одной стомиллионной доли секунды. Радиус такого слабого взаимодействия, как и сильного, очень мал, однако его интенсивность в триллион раз ниже интенсивности сильного взаимодействия. Хотя интенсивность слабого взаимодействия и ниже электромагнитного в 10 млрд. раз, оно все равно гораздо сильнее гравитационной силы, которая считается самой слабой силой в природе.
Раз пионы являются частицами обмена при сильном взаимодействии, у слабого взаимодействия также должны быть свои частицы обмена. Такая «слабая частица обмена» (обозначается w) должна быть еще более неуловимой, чем пион и фотон, но менее неуловимой, чем гравитон. Она должна быть бозоном, масса которого больше протона, но меньше пиона. Поэтому такую частицу и называют иногда средним бозоном. По некоторым данным, эту частицу удалось обнаружить, но информация еще не проверена.
Протон, антипротон, положительный пион и отрицательный ион могут вступать в следующие четыре вида взаимодействий: сильные, слабые, электромагнитные и гравитационные. Не обладающие электрическим зарядом нейтрон, антинейтрон и нейтральный пион не вступают лишь в электромагнитные взаимодействия, а электрон, позитрон, положительный мюон и отрицательный ион не вступают в сильные взаимодействия.
Больше всего в этом отношении «не повезло» нейтрино и антинейтрино. Они не вступают в сильные взаимодействия; они не обладают электрическим зарядом, поэтому не вступают в электромагнитные взаимодействия; не обладая массой, они не вступают в гравитационные взаимодействия. Нейтрино и антинейтрино вступают лишь в слабые взаимодействия. Поэтому появление в ходе распада частицы нейтрино или антинейтрино является верным признаком слабого взаимодействия. Слабым взаимодействием является, например, распад нейтрона.
Период полураспада свободного положительного или отрицательного пиона равен одной двадцати пяти миллиардной секунды, то есть образовавшиеся свободные пионы тут же распадаются на мюоны и нейтрино. Обозначив пионы как ?, а мюоны как ? (греческая «мю»), запишем формулу распада положительного и отрицательного пионов:
?+ ? ?+ + ?0, (Уравнение 14.5)
?– ? ?– + ?0. (Уравнение 14.6)
Вначале физики предположили, что масса образующегося в ходе распада пиона нейтрино должна быть гораздо больше массы обычного нейтрино и, возможно, в 100 раз больше массы электрона. Какое-то время они называли такой нейтрино мю-мезонным, однако в ходе последующих исследований выяснилось, что продукт распада пиона является безмассовым нейтрино.
Что касается мюона, он является не только «тяжелым электроном», но полноправным членом семейства электронов. Поэтому отрицательному мюону можно присвоить электронное число +1, как у электрона, а положительному мюону электронное число –1, как у позитрона.
Тогда общее электронное число образующихся по формуле 14.5 положительного мюона (–1) и нейтрино (+1) равно 0, что совпадает с электронным числом исходного пиона (пион не является членом семейства электронов, поэтому его электронное число равно 0). Точно так же образование по формуле 14.6 отрицательного мюона (+1) требует образования и антинейтрино (–1), так как общее электронное число равно 0.
Трудность вызывает процесс распада мюона. Мюон распадается на электрон и два нейтрино. Если электронное число сохраняется, то один из нейтрино должен быть антинейтрино. Распад отрицательного мюона можно записать так:
?– ? e– + ?0 + ?–. (Уравнение 14.7)
Электронное число отрицательного мюона равно +1. Общее электронное число продуктов распада равно +1 (электрон –1, нейтрино +1 и антинейтрино –1). Электронное число сохраняется.
Но почему же тогда нейтрино и антинейтрино в некоторых случаях аннигилируют друг друга, превращаясь в энергию, а в других случаях происходит соединение частицы и античастицы? Если это так, то, возможно, в некоторых случаях мюон распадается только на электрон, а оставшаяся масса переходит в фотоны?
Впрочем, такого не наблюдается, и физики пришли к выводу, что образующиеся в процессе распада мюона нейтрино и антинейтрино не являются противоположными друг другу частицами. Возможно ли, что нейтрино образуется в связи с мюоном, а антинейтрино в связи с электроном и что мюоны и электроны образуют различные типы нейтрино?
В 1962 году это удалось проверить следующим способом. Пучок электронов очень высокой энергии направили на атомы бериллия, и в результате столкновения образовался поток интенсивных пионов. Пионы моментально распадались на мюоны и нейтрино, а затем все эти частицы ударялись о лист брони 13,5 м толщиной. Лист останавливал все частицы, за исключением нейтрино. Те свободно проходили сквозь броню внутрь детектора, где они вступали во взаимодействие с нейтроном, образуя протон и электрон или же отрицательный мюон.
Если существует лишь один тип нейтрино, то в процессе его распада отрицательные мюоны и электроны должны образовываться в равных количествах:
?0 + n0 ? p+ + e–, (Уравнение 14.8)
?0 + n0 ? p+ + ?–. (Уравнение 14.9)
Как видите, и в том и в другом случае барионное число сохраняется. Сохраняется и электронное число, так как и электронное число исходного нейтрино, и электронные числа образующихся электрона и отрицательного мюона равны +1. Во время субатомных взаимодействий все, что может произойти, происходит, поэтому физики и были уверены, что если существует лишь один тип нейтрино, то мюоны и электроны будут образовываться в равных количествах.
Как бы не так! Образовывались лишь отрицательные мюоны.
Это означало, что нейтрино, образующиеся в результате распада пионов на мюоны и нейтрино, являются мюон-нейтрино, особой разновидностью нейтрино, которое может образовывать только мюоны, но никак не электроны. Аналогично обычные нейтрино, образующиеся в связи с электронами и позитронами, являются электрон-нейтрино, и они могут образовывать только электроны или позитроны, но никак не мюоны.
Обозначив мюон-нейтрино как ?? а электрон-нейтрино как ?e, перепишем формулы 14.1–14.6 следующим образом:
n0 ? p+ + e– + ?–e, (Уравнение 14.10)
p+ ? n0 + e+ + ?0e, (Уравнение 14.11)
e– + e+ ? ?–e + ?–e, (Уравнение 14.12)
?–e+ p+ ? e+ + n0, (Уравнение 14.13)
?+ ? ?+ + ?0?, (Уравнение 14.14)
?– ? ?– + ?–?. (Уравнение 14.15)
В формулах 14.10–14.13 электронное число сохраняется. В формулах 14.14 и 14.15 вступает в силу закон сохранения мюнного числа. Мюонное число отрицательного мюона и мюон-нейтрино равны +1, а положительного мюона и мюон-антинейтрино равны –1. Как видите, в формулах 14.14 и 14.15 мюонное число и до, и после распада пиона равно 0.
Формула 14.7 описывает взаимодействие с участием и электронов, и мюонов. Мы можем переписать ее как:
?– ? e– + ?0? + ?–e. (Уравнение 14.16)
В результате такого взаимодействия мюонное число сохраняется: мюонное число исходного отрицательного мюона и образующегося мюон-нейтрино равно +1. Кроме того, сохраняется и электронное число: среди исходных элементов членов семейства электронов нет, поэтому электронное число равно 0, а среди образующихся продуктов есть электрон (электронное число +1) и электрон-антинейтрино (электронное число –1), и их общее электронное число равно 0.
Точно так же распад положительного мюона будет выглядеть следующим образом:
?+ ? e+ + ?–? + ?0e. (Уравнение 14.17)
В результате распада положительного мюона образуются позитрон, электрон-нейтрино и мюон-антинейтрино.
В ходе распада отрицательного или положительного мюона не происходит взаимной аннигиляции нейтрино и антинейтрино, так как они не являются античастицами. Взаимная аннигиляция приведет к нарушению законов сохранения электронного и мюонного чисел.
И электрон-нейтрино, и мюон-нейтрино являются безмассовыми незаряженными частицами со спином ?. До сих пор остается загадкой, чем же они отличаются друг от друга.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК