Излучение черного тела
Теория относительности не отрицает существования эфира. Однако она устраняет необходимость в нем, а если он не нужен, зачем о нем думать?
Так, отпадает необходимость в эфире как в мериле абсолютного движения, поскольку релятивизм начал с утверждения о том, что такого абсолютного мерила не существует, и закончил демонстрацией отсутствия его необходимости. И опять же эфир не является необходимым в качестве среды для передачи силы гравитации и обеспечения «воздействия на расстоянии». Если гравитация — вопрос геометрии пространства-времени, а не передаваемая сила, то вопрос о возможности воздействия на расстоянии не встает.
Остается еще одно возможное использование для эфира — как среды, в которой передаются световые волны через вакуум. Вторая работа Эйнштейна, изданная в 1905 году (в добавление к его статье о специальной относительности), устранила и эту возможность. Работа Эйнштейна по относительности развилась из парадокса, затрагивающего свет, который проявился в ходе эксперимента Михельсона — Морли (см. гл. 6). Вторая статья Эйнштейна развилась из другого парадокса, также имеющего дело со светом, который возник в последних десятилетиях XIX века (именно за свою вторую статью он позже получил Нобелевскую премию).
Этот второй парадокс начался с работы Кирхгофа по спектроскопии (см. гл. 4). Он показал, что вещество, впитывавшее определенные частоты света лучше, чем остальные, будет также и испускать эти же частоты лучше при нагревании до раскаленного состояния.
Тогда предположим, что кто-либо представил вещество, способное поглощать весь свет всех частот, который падает на него. Такое тело не будет отражать света никакой частоты и соответственно будет совершенно черным. Поэтому естественно называть такое вещество черным телом. Если черное тело раскалить, то, по правилу Кирхгофа, его испускание должно быть таким же совершенным, как и его поглощение. Оно должно испускать свет всех частот, поскольку оно поглощает все частоты.
Работа Кирхгофа должна была удовлетворить интерес физиков к количественным аспектам излучения и к тому, как такое излучение изменялось в зависимости от температуры. Общеизвестно было, что излучаемая телом энергия возрастает по мере его нагревания, но количественно это было измерено только в 1879 году австрийским физиком Йозефом Стефаном (1835–1893). Он показал, что вся излучаемая телом энергия возрастает пропорционально четвертой степени разницы в абсолютной температуре. (Абсолютная температура, обозначаемая °К, равна температуре по Цельсию, °С, плюс 273°; см. ч. I.)
Представим себе, к примеру, что при комнатной температуре, 300 °К, тело излучает определенное количество энергии. Если температура поднимается до 600 °К — температуры плавления свинца, — абсолютная температура удваивается и общее количество излучаемой энергии возрастает в 24 то есть в 16 раз. Если то же самое тело нагреть до температуры 6000 °К, какова она на поверхности Солнца, это в двадцать раз большая температура, чем комнатная, и излучает оно в 204, или в 160 000 раз больше энергии.
В 1884 году Больцман (один из разработчиков кинетической теории газов) дал этому открытию твердое математическое обоснование и показал, что оно точно относится только к черным телам и что нечерные тела всегда излучают меньше тепла, чем полагается по закону Стефана. Поэтому такое отношение иногда называют законом Стефана — Больцмана.
Но с увеличением температуры меняется не только общее количество энергии. Природа испускаемых«волн тоже меняется, и это известно человеку. Для предметов с температурой батарей парового отопления, например (менее 400 °К), испускаемое излучение лежит в спектре низкочастотного инфракрасного. Ваша кожа поглощает инфракрасное излучение, и вы ощущаете его как тепло, но вы ничего не видите. Батарея в темной комнате не видна.
По мере повышения температуры предмета он не только излучает больше тепла, но и частота излучения тоже как-то меняется. К тому моменту, когда температура поднимается до 950 °К, тело уже достаточно излучает высоких частот, чтобы воздействовать на сетчатку и чтобы приобретать в наших глазах тусклый красный свет. По мере того как температура еще повышается, красный свет делается еще ярче и в конце концов становится оранжевым, потом — желтым, поскольку испускается все больше и больше света все более высоких частот.
При температуре 2000 °К предмет, уже ярко светящийся, все еще испускает много излучения в инфракрасном спектре. Только когда температура достигает 6000 °К, температуры поверхности Солнца, тогда большая часть испускаемого излучения лежит в видимой части спектра. (На самом деле, скорее всего, именно потому, что поверхность Солнца имеет определенную температуру, наши глаза и сформировались таким образом, чтобы быть чувствительными именно к этой части спектра.)
Вплоть до конца XIX века физики пытались измерить распределение излучения среди света различных частот на различных температурах. Для того чтобы сделать это точно, требовалось черное тело, поскольку только тогда можно было быть уверенным, что на каждой частоте излучается весь возможный при данной температуре свет. Для нечерного тела определенные частоты с большой долей вероятности должны были излучаться недостаточным образом; точное положение этих частот зависело от химической природы излучающего тела.
Поскольку ни одно существующее тело не поглощает всего света, падающего на него, то ни одно реальное тело не является полностью черным телом, что казалось серьезным затруднением на пути этого направления исследований. Однако в 90-х годах XIX века немецкий физик Вильгельм Вин (1864–1928) придумал оригинальный способ обойти это препятствие.
Представим себе поверхность с отверстием. Свет с любой длиной волны, попадая в это отверстие, упадет на грубую внутреннюю стену и будет большей частью поглощен. То, что не будет поглощено, будет рассеяно во всех направлениях, так что попадет на другие стены и будет поглощено там. При каждом контакте со стеной будет происходить дополнительное поглощение, и только крошечная часть света сможет отражаться достаточно долго, чтобы в конце концов снова отразиться из отверстия. Соответственно это отверстие будет выполнять роль совершенного поглотителя (в пределах разумного) и, следовательно, будет представлять собой черное тело. Если поверхность нагреть до определенной температуры и оставить таковой, то излучение, испускаемое из отверстия, будет являться излучением черного тела и распределение его частоты можно изучать.
В 1895 году Вьен произвел такое исследование и обнаружил, что при заданной температуре энергия излучалась на определенных частотах, увеличиваясь с возрастанием частоты и достигая максимума, а затем начинала уменьшаться, по мере того как частота поднималась еще выше.
Повышая температуру, Вьен обнаруживал, что на каждой частоте излучается больше энергии и что снова достигается максимум. Однако новый максимум был на большей частоте, чем предыдущий. Фактически, по мере того как он продолжал поднимать температуру, максимум частоты излучения продолжал двигаться в направлении все более и более высоких частот. Значение максимума частоты изменялось напрямую вместе с абсолютной температурой (T), так что закон Вьена можно выразить следующим образом:
Vmax = kT. (Уравнение 8.1)
где k — это константа отношения.
И закон Стефана, и закон Вьена очень важны для астрономии. Из природы спектра звезды можно узнать величину температуры ее поверхности. А из него можно получить представление о степени, в которой она излучает энергию, и, следовательно, о времени ее жизни. Чем горячее звезда, тем более короткой будет ее жизнь.
Из закона Вьена следует, что цвет звезд определяется их температурой (а не приближением или удалением их от нас, как предполагал Допплер, — см. гл. 5). Красноватые звезды сравнительно холодные, температура их поверхности 2000–3000 °К. Оранжевые звезды имеют температуру поверхности 3000–5000 °К, а желтые (такие, как наше Солнце) — 5000–8000 °К. Есть еще белые звезды, температура поверхности которых 8000–12 000 °К, а голубоватые звезды еще горячее.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК