Кривые зеркала

Обычное зеркало, с которым мы хорошо знакомы, — плоское зеркало. Для того чтобы производить четкое отражение, отражающая поверхность должна быть плоской. Зеркало может быть как прямым, так и кривым. Параллельные лучи света, отраженные от искривленной поверхности, больше не являются параллельными, но и во всех направлениях они не разлетаются. Отражение упорядоченно, и лучи света могут сходиться или расходиться.

Самый простой пример искривления — это часть сферы. Если вы смотрите снаружи, так что она похожа на горку и ближе всего к вам ее центр, то это выпуклая поверхность. Если вы смотрите изнутри, как будто глядите в яму, и центр ее максимально от вас удален, то это вогнутая поверхность.

Сферический участок стекла, правильным образом посеребренный, является сферическим зеркалом. Если он посеребрен по выпуклой поверхности так, что зеркальной является его вогнутая сторона, то это, разумеется, вогнутое сферическое зеркало.

Центр сферы, частью которой является кривое зеркало, является центром искривления. Линия, соединяющая центр искривления со средней точкой зеркала, называется главной осью зеркала.

Допустим, пучок света, параллельный главной оси, падает на вогнутую отражающую поверхность. Луч, который оказывается на самой главной оси, падает перпендикулярно и отражается таким же. Луч же, падающий рядом с главной осью, но не на нее, зеркало отражает так, что луч уходит под небольшим углом к нормали. Он отражается по другую сторону от нормали, немного искривляясь по направлению к главной оси. Если луч света падает дальше от главной оси, зеркало больше изменяет его угол и сильнее искривляет его по направлению к главной оси. Поскольку зеркало — участок сферы и отражает одинаково по всем направлениям от главной оси, то это одинаково верно для всех лучей, падают ли они справа или слева от главной оси, выше или ниже ее. Отражения от каждой части зеркала сближаются к главной оси; отраженные лучи сходятся.

Вогнутое сферическое зеркало

Если бы мы рассматривали только те лучи, которые падают близко к середине зеркала, мы обнаружили бы, что они сходятся таким образом, чтобы встретиться на ограниченном пространстве; фактически в одной точке. Эта точка называется фокусом (от латинского слова, означающего «очаг, где пылает огонь»). Фокус падает на главную ось на полпути от середины зеркала до центра искривления.

Фактически отраженные лучи встречаются не в самой точке фокуса. Это становится очевидным, если мы рассмотрим лучи, падающие на сферическое зеркало в отдалении от главной оси. Отражения этих лучей проходят на достаточно большом расстоянии от фокуса. Это называется сферической аберрацией (от латинского «заблудиться»). Эти далекие лучи падают между фокусом и самим зеркалом и отражаются со слишком большим углом. Другими словами, зеркало слишком сильно искривлено, чтобы все лучи попадали в фокус. Для того чтобы избежать этого, нужно зеркало, искривленное менее резко, чем участок сферы. Нужное искривление — параболоидное.

Если продолжить участок сферы, он сформирует сферу и замкнется. Параболоид же выглядит как сегмент сферы лишь на небольшом участке вокруг центральной точки. Если его продолжить и увеличить, он не замкнется. Он будет изгибаться все меньше и меньше, пока его стенки не станут почти прямыми, в результате чего получится длинный цилиндр, очень медленно расширяющийся. Зеркало, сделанное в виде части такого параболоида (имеется в виду участок вокруг центра), называется параболическим зеркалом.

Если пучок световых лучей, параллельный главной оси такого параболического зеркала, падает на его вогнутую поверхность, лучи действительно сходятся в фокусе, без всякой аберрации.

Чтобы произвести подобный пучок света, состоящий из параллельных лучей, мы должны, строго говоря, представить точечный источник света на главной оси на бесконечно далеком расстоянии от зеркала. Если этот источник находится на конечно далеком расстоянии, то лучи, движущиеся от такого источника к зеркалу, не являются четко параллельными, они немного расходятся. Каждый луч попадает на поверхность зеркала под углом к нормали, который немного меньше, чем мог бы быть, если бы лучи были действительно параллельны, и соответственно отражается под меньшим углом.

Следовательно, лучи сходятся не в фокусе, а дальше от зеркала. Если расстояние от точечного источника света велико по сравнению с фокусным расстоянием (которое для большинства параболических зеркал составляет несколько дюймов), то точка, в которой сходятся лучи, очень близка к фокусу — настолько близка, что разницу между ними можно игнорировать.

Если источник света приближается, то отраженные лучи сходятся все дальше и дальше от зеркала. Когда источник света находится в двух фокусных расстояниях от зеркала, то в конечном итоге отраженные лучи сходятся на самом же источнике; если он придвигается еще ближе, то отраженные лучи сходятся на точке позади него.

В итоге если источник света находится в самом фокусе, то отраженные лучи вообще перестают сходиться и становятся параллельными. (Можно сказать, что точка конвергенции — точка, где встречаются лучи, — переместилась на бесконечно далекое расстояние от зеркала.) Автомобильные фары устроены именно так. Их внутренняя поверхность — параболическое зеркало, и маленькая лампочка находится в фокусе. Поэтому фары излучают вперед вполне прямой пучок света.

Пусть расстояние от источника света до зеркала равно D1, a расстояние от точки конвергенции до зеркала равно D1. Расстояние от фокуса до зеркала обозначим f. Тогда окажется верной следующая зависимость:

1/D0 + 1/D1 = 1/f. (Уравнение 2.2)

Мы можем проверить его для случаев, которые мы только что обсудили. Предположим, что источник света находится очень далеко, практически бесконечно отдален. В таком случае D0 чрезвычайно велико, а 1/D0 чрезвычайно мало. Фактически можно считать, что 1/D0 равно нулю. В таком случае уравнение 2.2 выглядит как 1/D1 = 1/f и 1/D1 = f, что означает, что отраженные лучи света встречаются в фокусе.

Параболическое зеркало

Если источник света находится на главной оси, но на расстоянии в два раза большем фокусного от зеркала, то D0 = 2f, и уравнение 2.2 приходит к виду: 1/2f + 1/D1 = 1/f. Решив это уравнение, мы получаем, что D1 = f. Другими словами, отраженные лучи в этом случае сходятся в той же точке, где находится и сам источник света.

А если источник света расположен в фокусе? В этом случае D0 = f, и уравнение 2.2 выглядит как 1/f + 1/D1 = 1/f, из чего мы видим, что 1/D1 = 0. Но если 1/D1 = 0, значит, D1 должно стремиться к бесконечности. Расстояние от зеркала до точки, где сходятся лучи, бесконечно, и, следовательно, лучи вообще не сходятся — они параллельны.

В предыдущем разделе я предположил, что источник света — точка. На самом деле, конечно, он не бывает точечным. Предположим, что источник света — пламя свечи, которое, естественно, имеет площадь.

Часть пламени находится чуть выше главной оси, часть — чуть ниже, часть — слева, часть — справа. Лучи света, исходящие из точки выше главной оси, отражаются чуть ниже истинной точки конвергенции (той, что была бы истинной точкой, если бы пламя свечи было точечным источником света); те же лучи, которые исходят из точки ниже главной оси, отражаются в точку выше точки конвергенции; те, что исходят из точки слева, отражаются вправо. Если мы рассмотрим каждый луч по отдельности, то чем больше расстояние от главной оси до точки, откуда он исходит, тем больше расстояние от точки конвергенции до точки, куда он приходит, но с другой стороны.

В результате в той области, где встречаются отраженные лучи, получается отражение, в котором перевернуты не только лево и право (как в плоском зеркале), но и верх и низ. Получается перевернутое отражение; если вы посмотрите на свое отражение в начищенной ложке, вы увидите себя вверх ногами.

Отражение, производимое таким вогнутым зеркалом, отличается от плоского отражения еще одним. Изображение, создаваемое плоским зеркалом, как было уже сказано, находится не позади зеркала, как кажется, поэтому это мнимое изображение. В случае же вогнутого зеркала изображение создается перед зеркалом посредством встречающихся лучей. Изображение действительно здесь, до него можно дотронуться; следовательно, это реальное изображение.

Разумеется, трогая это реальное изображение, вы ничего не почувствуете, потому что прикосновение ассоциируется у нас с прикосновением к материи. Параболическое зеркало не отражает материю; оно отражает свет, и его нельзя потрогать в обычном смысле этого слова. Однако вы можете почувствовать свет, когда он, поглощаясь кожей, превращается в тепло, и в этом смысле, чувствуя тепло, вы «трогаете» изображение.

Находясь в шести футах от свечи, палец получает немного тепла от той доли излучения, что падает прямо на него. Однако палец получает малую долю всего излучения и нагревается незначительно.

Вогнутое зеркало перехватывает больше излучения от свечи и сводит его в небольшом объеме пространства. Если палец сунуть в точку конвергенции, он почувствует больше тепла, чем где-либо поблизости.

Возможно, концентрация тепла возрастет слишком в малой степени, чтобы это можно было почувствовать, но если использовать вогнутое зеркало для концентрации лучей солнца, то это вы точно почувствуете. Построены большие параболические зеркала, которые захватывают солнечное излучение на большой площади и собирают его воедино. В фокусе солнечных печей достигались температуры до 7000 °С.

Зеркало плавающей кривизны может выдавать странные и смешные искажения изображения, как знает любой, кто побывал в парке аттракционов. Однако хорошее отражение с чистого зеркала неискаженной формы может выглядеть полностью правильным, особенно если края зеркала спрятаны так, чтобы со стороны нельзя было заподозрить его наличие.

Случайный зритель может перепутать изображение и реальность, и на этом основываются некоторые фокусы. Естественно, реальное изображение дразнит еще лучше, чем мнимое. В Бостонском научном музее реальное изображение проецируется таким образом, чтобы казалось, что монеты сыплются в перевернутый кубок вопреки закону тяготения. Зрители (как взрослые, так и дети) без устали подставляют руки туда, где должны быть монеты. Вся их нематериальность не может убедить глаза, что монет здесь нет.

Предположим, что источник света приблизили к зеркалу еще ближе фокусного расстояния. В этом случае отраженные лучи не сходятся и не являются параллельными; они расходятся. Такие расходящиеся лучи, распространяясь с поверхности в пространство, можно рассматривать как сходящиеся, если проследовать по ним за зеркало. В самом деле, если мысленно продолжить лучи сквозь поверхность зеркала в пространство за ним, то они сойдутся в одной точке. И в этой точке вы увидите изображение. Поскольку оно формируется позади зеркала, там, куда свет на самом деле не проникает, то это мнимое изображение, как и на плоском зеркале, и, как в случае с плоским зеркалом, изображение сориентировано верхом кверху.

Уравнение 2.2 можно применить к этой ситуации. Если источник света ближе к зеркалу, чем фокус, то D0 меньше, чем f, и 1/D0 должно соответственно быть больше, чем 1/f (Если это для вас не очевидно, то вспомните, что 2 меньше, чем 4, в то время как ? больше, чем ?.)

Решив уравнение 2.2 для 1/D1, мы получим:

1/D1 = 1/f – 1/D0. (Уравнение 2.3)

Поскольку в рассматриваемом случае 1/D0 больше, чем 1/f, 1/D1, должно иметь отрицательное значение. Отсюда видно, что само по себе D1 должно быть отрицательной величиной.

Это понятно. В предыдущих обсуждаемых случаях все расстояния измерялись вперед от зеркала. В данном же случае точка, в которой сходятся отраженные лучи и где формируется изображение, находится за зеркалом и соответственно величина должна быть отрицательной.

Уравнение 2.2 применимо не только к вогнутым зеркалам; оно имеет более общее применение.

Представим себе вновь плоское зеркало. Пучок параллельных лучей падает на него вдоль главной оси (за главную ось на плоском зеркале можно принять любую линию нормали) и отражается обратно вдоль нее таким же параллельным. Лучи не встречаются, и соответственно расстояние от зеркала до фокуса бесконечно. Но если f бесконечно, то 1/f должно быть равным нулю, и для плоского зеркала уравнение 2.2 принимает вид:

1/D0 + 1/D1 = 0. (Уравнение 2.4)

Если решить уравнение 2.4 для D1, то выходит, что D1 = –D0. Так как D0 (расстояние до отражаемого объекта) всегда должно быть положительно, поскольку для того, чтобы вообще отражаться, предмет должен всегда находиться перед зеркалом, D1 должно быть отрицательным. Соответственно в случае плоского зеркала изображение всегда должно находиться за зеркалом и быть мнимым. Итак, если D1, и D0 не равны, то изображение должно находиться далеко за зеркалом, в то время как отражаемый объект находится перед зеркалом.

А что, если у нас выпуклое зеркало? То есть кривое зеркало, посеребренное с вогнутой стороны, так что мы, глядя в него, видим отражение с выпуклой стороны. Пучок параллельных лучей света падает на такое зеркало и отражается в стороны от главной оси (за исключением одного луча, который совпадает с ней). Опять же, если расходящиеся отраженные лучи продолжить (мысленно) сквозь зеркало, они сойдутся в фокусе.

Фокус выпуклого зеркала, лежащий за зеркалом, является мнимым фокусом, расстояние от него до зеркала отрицательно. Поэтому, говоря о выпуклом зеркале, мы должны говорить о –f и соответственно о –1/f. Для выпуклого зеркала уравнение 2.2 приобретает вид:

1/D0 – 1/D1 = –1/f, (Уравнение 2.5)

1/D0 = 1/D1 – 1/f, (Уравнение 2.6)

Поскольку отражаемый предмет должен быть всегда перед зеркалом, D0 и соответственно 1/D0 должны быть положительными. Следовательно, 1/D1 — 1/f должно быть положительным, а чтобы это было так, 1/D1 должно быть больше, чем 1/f. Но это уводит нас еще на шаг дальше и говорит о том, что само по себе D1 должно быть меньше, чем f. Другими словами, очевидно, что расстояние до мнимого изображения, отраженного выпуклым зеркалом, должно быть меньше фокусного, как бы далеко от зеркала ни находился отраженный объект. По этой причине все объекты, отраженные в выпуклом зеркале, кажутся сжатыми в крошечное пространство, и маленькое выпуклое зеркало в углу большой переполненной комнаты может дать панорамный обзор всей комнаты (хотя и в несколько искаженном виде).

Реальные и мнимые изображения 

Размеры изображения (S1) зависят от размеров отражаемого объекта (S0), так же как зависят друг от друга и расстояния, вне зависимости от того, простираются ли они вперед или назад по отношению к зеркалу. Иными словами,

S1/S0 = D1/D0 . (Уравнение 2.7)

На плоском зеркале, где расстояние от изображения до зеркала равно расстоянию от зеркала до отражаемого объекта, размеры объекта и изображения равны. Плоское зеркало не уменьшает и не увеличивает объект. В выпуклом зеркале, где все изображения должны быть ближе к зеркалу, чем фокус, как бы далеко ни были отображаемые объекты, все изображения маленькие. Чем дальше находится отражаемый объект, тем ближе и соответственно меньше изображение.

В вогнутом же зеркале, когда отражаемый объект лежит между фокусом и центром изгиба, изображение находится за центром изгиба. В таком случае, поскольку изображение находится дальше от зеркала, чем отражаемый объект, изображение крупнее, чем объект. Чем ближе объект находится к фокусу, тем крупнее получается изображение. Разумеется, чем изображение крупнее, тем оно тусклее, поскольку одно и то же количество света распространяется на все большую площадь.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК