Поляризованный свет

Недостаточно просто сказать, что свет состоит из волн, потому что существуют два класса волн, свойства которых сильно различаются. Так, волны на воде — поперечные волны, волнообразно пульсирующие вверх и вниз под правильными углами к направлению, в котором движется сама волна. Звуковые волны — продольные волны, волнообразно пульсирующие вперед и назад в том же самом направлении, в котором движется сама волна (см. ч. I). К какой же разновидности относятся световые волны?

До второго десятилетия XIX века то меньшинство ученых, которые считали свет волновой формой, рассматривали его как продольную волну. В частности, так считал и Хайгенс. Однако оставался еще эксперимент XVII века по свету, который не объяснили удовлетворительно ни ньютоновская теория частиц, ни хайгенсовская теория продольных волн, и это в конце концов изменило всеобщую точку зрения.

Этот эксперимент был впервые описан в 1669 году голландским физиком Эразмом Бартолином (1625–1698). Он обнаружил, что кристалл исландского шпата (прозрачной формы карбоната кальция) производил двойное изображение. Если, например, кристалл поместить на поверхность, на которой есть черная точка, то сквозь него можно было увидеть две точки. Если кристалл вращать, сохраняя контакт с поверхностью, одна из точек оставалась неподвижной, в то время как вторая начинала вращаться вокруг первой. Очевидно, проходя сквозь кристалл, свет расщеплялся на два луча, преломлявшиеся по-разному. Это явление так и назвали «двойное преломление». Луч, воспроизводивший недвижимую точку, Бартолин назвал ординарным лучом, второй же — экстраординардным.

И Хайгенс и Ньютон принимали во внимание этот эксперимент, но не могли прийти к четкому заключению. Очевидно, если свет преломлен двумя различными способами, его составляющие, будь то частицы или продольные волны, должны чем-то различаться. Но чем?

Ньютон выдвинул какие-то смутные предположения, что частицы света могут различаться между собой полярностью, как магниты (см. гл. 9). Он не стал развивать эту теорию, но сама идея не была забыта.

В 1808 году французский военный инженер Этьен Луи Малюс (1775–1812) экспериментировал с некоторыми кристаллами, дающими двойное преломление. Он поместил один из них на солнечный свет, отраженный от окна, снаружи на некотором расстоянии от комнаты и обнаружил, что вместо того, чтобы увидеть пятно солнечного света раздвоенным (как он ожидал), он увидел его единым. Он решил, что, отражая свет, окно отразило только один «полюс» света, о котором говорил Ньютон. Отраженный свет он назвал поляризованным светом. Это было неправильное название, оно не отражало реального положения вещей, но закрепилось и уже, несомненно, будет сохраняться.

Когда вследствие экспериментов Янга вновь приобрела известность волновая теория света, вскоре стало ясно, что достаточно только признать, что свет имеет форму поперечных, а не продольных волн, и поляризацию света можно без труда объяснить. Янг пришел к этому выводу в 1817 году, а дальше его развил французский физик Огюстен Жан Френель (1788–1827). В 1814 году Френель обнаружил несомненные примеры интерференции и продолжил иметь дело с поперечными волнами, используя подробный математический анализ.

Чтобы понять, как поперечные волны объясняют поляризацию, представьте себе луч света, движущийся от вас, в котором волны пульсируют под правильным углом к линии движения, как и положено поперечным волнам. Допустим, волны света колеблются вверх и вниз. Однако они могут также колебаться вправо и влево, сохраняя при этом правильный угол к линии движения. Они могут даже колебаться по диагонали под любым углом, сохраняя при этом правильный угол к линии движения. Когда составляющие свет волны колеблются во всех возможных направлениях под правильным углом к движению и распределены по всем плоскостям поровну — это неполяризованный свет.

Давайте остановим внимание на двух видах колебания — вверх-вниз и влево-вправо. Все колебания, принимающие диагональные положения, можно разделить на вертикальную и горизонтальную составляющие (так же как вектор силы можно разделить на составляющие, между которыми будет прямой угол, см. ч. I). Следовательно, для простоты мы можем представить неполяризованный свет, как состоящий только из вертикальной и горизонтальной составляющих, где интенсивность обеих одинакова.

Возможно, вертикальная составляющая может пройти через прозрачную среду там, где не может пройти горизонтальная. По аналогии, допустим, вы держите конец веревки, вплетенной в изгородь. Если вы пустите по веревке вертикальную волну, она будет ходить вверх-вниз без помех; если же пустите по веревке волну горизонтальную, то волнообразные движения наткнутся на жерди изгороди и будут подавлены.

Способ, которым свет проходит сквозь прозрачное вещество, в таком случае зависит от того, как сформировано это вещество из атомов — другими словами, как ориентированы промежутки между атомами. В большинстве случаев атомы сгруппированы так, что световые волны с любой ориентацией могут без труда проходить сквозь вещество. Свет входит неполяризованным и выходит наружу неполяризованным. Что же касается исландского шпата, с ним все не так: сквозь него могут проходить только четко вертикально и горизонтально колеблющиеся волны, причем одни из них — с большим трудом, следовательно, сильнее замедляются и сильнее преломляются. В результате из кристалла выходят два луча: один — состоящий только из вертикально колеблющихся волн, а другой — только из горизонтально колеблющихся. Оба луча представляют собой поляризованный свет. Поскольку колебания световых волн в каждом луче происходят только в одной плоскости, такой свет более точно можно назвать плоскополяризованным.

Призма Николя

В 1828 году британский физик Уильям Николь (1768–1851) создал устройство, где использовались различные направления, в которых двигались эти плоскополяризованные лучи внутри кристалла исландского шпата. Он начал с ромбоэдрического кристалла вещества (все грани которого имели форму параллелограмма) и разрезал его по диагонали. Две половинки были вновь склеены канадским бальзамом (смолой дерева, именуемого бальзамической пихтой).

Лучи света, попадавшие в кристалл, расщеплялись на два плоскополяризованных луча, движущиеся в несколько различных направлениях. Один луч попадал в слой канадского бальзама под таким углом, что отражался полностью. Отраженный луч попадал на окрашенную часть призмы и поглощался. Второй луч, попадая в слой канадского бальзама под несколько другим углом, передавался, проходил во вторую половину кристалла и вновь попадал в открытый воздух.

Исходящий из такой призмы (призмы Николя) свет состоял из одного плоскополяризованного луча, представлявшего примерно половину яркости изначального света.

Предположим, что свет, проходящий через призму Николя, пропускают через вторую призму Николя. Если вторая призма сориентирована так же, как первая, то свет пройдет сквозь нее беспрепятственно. (Как если веревку, по которой пустили волну вверх-вниз, пропустить сначала через одну изгородь, потом через вторую. Ни одна, ни другая не помешает колебаниям.)

Но предположим, что вторую призму Николя повернули под небольшим углом. Поляризованный свет, исходя из первой призмы, не может с полной силой пройти через вторую. Происходит небольшая потеря (как будет и с колебаниями веревки, если жерди второй изгороди будут немного наклонены диагонально).

Количество света, которое пройдет через вторую призму, будет уменьшаться по мере того, как будет возрастать угол ее вращения. Когда, наконец, он дойдет до 90°, свет вообще не будет проходить.

Таким образом, вторую призму можно использовать для точного определения плоскости, по которой поляризован свет, исходящий из первой призмы. Вращая вторую призму и отмечая положение, при котором видимый свет имеет максимальную яркость, можно обнаружить плоскость поляризации. Если света вообще не видно, то плоскость второй призмы находится под прямым углом к плоскости поляризации.

Поскольку трудно с точностью судить о максимуме или минимуме яркости, вторую призму можно сделать таким образом, чтобы она состояла как бы из двух призм под небольшим углом друг к другу. Если одна выровнена верно, другая будет слегка отклонена. Таким образом, глядя в окуляр, можно будет увидеть, что одна половина отчетливо ярче другой. Настраивая выравнивание таким образом, чтобы обе половины имели одинаковую яркость, можно найти плоскость поляризации.

Первая призма является инструментом, который производит поляризованный свет, — поляризатором. Вторая, определяющая плоскость поляризации, — анализатор. Весь прибор в целом — полярископ.

Еще до того, как была изобретена призма Николя, французский физик Жан Батист Био (1774–1862) в 1815 году обнаружил, что, когда поляризованный свет двигается через растворы некоторых веществ или некоторые прозрачные кристаллы, его плоскость поляризации сдвигается.

Предположим, например, что между двумя призмами полярископа находится цилиндрический сосуд, содержащий воздух, и что призмы выровнены в том же направлении. Если в сосуд налить воды, ничего не происходит; две половинки поля, видимого в окуляр, остаются одинаково яркими. Плоскость поляризации света не изменилась, пройдя сквозь воду. Если вместо чистой воды в сосуд поместить раствор сахара, то две половинки, видимые в окуляр, будут иметь различную яркость. Чтобы они вновь стали одинаково яркими, анализатор придется повернуть на определенный угол. Этот угол покажет, насколько раствор сахара повернет плоскость поляризации света.

Размер этого угла зависит от различных факторов: от концентрации раствора и природы растворенного вещества; от расстояния, проходимого светом в этом растворе; от длины волны света; от температуры раствора. Если стандартизировать эти факторы и посмотреть или подсчитать, какой угол вращения будет иметь свете длиной волны, которую производит натриевая лампа, проходя один дециметр раствора, содержащего 1 г/см3 при температуре 20 C°, то мы получим удельное вращение.

Значение удельного вращения характеризует любую прозрачную систему. Для многих систем оно равно 0°, то есть плоскость поляризованного света вообще не поворачивается. Такие системы называются оптически неактивными. Системы, которые поворачивают плоскость поляризованного света, называются оптически активными.

Некоторые оптически активные системы вращают плоскость поляризованного света по часовой стрелке. Это описывается как правостороннее вращение, и такие системы — правосторонние. Другие же вращают свет против часовой стрелки и являются левосторонними.

В 1848 году французский химик Луи Пастер (1822–1895) смог продемонстрировать, что оптическая активность прозрачных кристаллов зависит от асимметричности таких кристаллов. Далее, если таким асимметричным кристаллам придать форму двух зеркал, одно будет правосторонним, а другое — левосторонним. Тот факт, что определенные растворы также были оптически активными, не позволял предположить, что асимметрия должна присутствовать в самих молекулах этих веществ. В 1974 году голландский физик и химик Якоб Ван Гофф (1852–1911) представил теорию молекулярной структуры, которая рассчитывала такую асимметрию в оптически активных средах. Обсуждение этого, однако, более уместно в учебнике химии, и я не буду здесь углубляться в эту тему.

Призмы Николя не только являются приборами для формирования плоскополяризованного света. Есть некоторые типы кристаллов, которые не просто расщепляют свет на два плоскополяризованных луча, а поглощают один и передают другой. Кристаллы сульфата йодохинина ведут себя именно так. К сожалению, невозможно создать большие полезные кристаллы из этого материала, потому что они получаются хрупкими и разрушаются при малейшем воздействии.

Однако в середине 1930-х годов студент Гарварда Эдвин Герберт Ленд (р. 1909) сообразил, что большие цельные кристаллы использовать не обязательно. Крошечные кристаллы, все сориентированные в одном и том же направлении, вполне могут быть использованы для этих же целей. Чтобы поддерживать их ориентацию и удерживать от дальнейшего разрушения, их следует включить в лист прозрачной гибкой пластмассы. Ленд закончил колледж в 1936 году, ушел в бизнес и создал то, что сейчас называют поляроидом. Он может выполнять все функции призм Николя более экономичным и удобным образом (правда, не столь точным).

Как обнаружил Малюс, лучи поляризованного света могут также быть произведены отражением под определенным верным углом от такого материала, как стекло; точный размер угла зависит от коэффициента преломления вещества. Солнечные очки, сделанные из поляроида, могут блокировать большую часть отраженного поляризованного света и урезать блеск.

Так, XIX век описал свет не просто как волну, а как поперечную волну; это решило много проблем, но и поставило некоторые проблемы.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК