Электрон

Фактически и в двухзарядной теории Дюфе, и в однозарядной теории Франклина была доля истины. После того как начало приходить понимание внутреннего строения атома в 90-х годах XIX века (эта тема будет подробно рассмотрена в III части нашей книги), было открыто существование субатомарных частиц и то, что одни из них несут электрический заряд, а другие — нет[98].

Из субатомарных частиц, имеющих заряд, самые распространенные — электрон и протон, которые противоположно заряжены. Тогда в известном смысле протон и электрон представляют собой два дюфеевских вида зарядов. С другой стороны, протон в условиях электростатических экспериментов проявил себя как абсолютно неподвижная частица, в то время как электрон, самый легкий из них, легко перемещался из одного тела в другое. В этом плане электрон и представляет собой единственный электрический заряд Франклина.

В незаряженном теле число электронов равно числу протонов и заряд отсутствует. Тело наполнено электрическими зарядами обоих видов, но они находятся в равновесии. В результате трения электроны перемещаются. Одно тело приобретает избыток электронов, а в другом получается их нехватка.

Однако обнаружилась одна печальная вещь. Электроны двигаются в направлении, противоположном предположенному Франклином. Франклин не угадал. Там, где, по его мнению, должен был быть избыток электрического заряда, на самом деле была нехватка электронов, и наоборот. По этой причине пришлось считать электрический заряд электрона отрицательным; избыток электронов приведет к отрицательному заряду, чтобы получалась нехватка заряда, по Франклину, в то время как недостаточное количество электронов приведет к положительному заряду, по Франклину. Поскольку электрон получил отрицательное значение заряда, протон получил положительное.

(Инженеры-электрики до сих пор считают, что электрический ток движется от положительного к отрицательному, несмотря на то что физики определили, что электроны движутся от отрицательного к положительному. Для практических целей не имеет значения, каким считать направление тока, ведь направление всегда одно и то же и никаких изменений в процессе тока не происходит.)

Кулон, измерив отношение силы между магнитными полюсами и расстояниями, сделал то же самое для силы между электрически заряженными телами. Здесь стоящая перед ним задача была несколько легче выполнима ввиду важной разницы между магнетизмом и электричеством. Магнитные полюса не существуют сами по себе. Каждое тело, имеющее северный полюс, должно также иметь и южный магнитный полюс. Соответственно на измерение магнитных сил между полюсами влияют и сила притяжения, и сила отталкивания, и это усложняет измерение. Электрические же заряды можно изолировать. Тело может нести только отрицательный или только положительный заряд. По этой причине притяжение может быть измерено без вмешательства усложняющего ситуацию отталкивания, и наоборот.

Кулон обнаружил, что электрическая сила, как и магнитная, изменяется обратно пропорционально квадрату расстояния. В сущности, уравнение, которое он использовал для выражения изменения электрической силы по мере изменения расстояния, было аналогично тому, которое он вывел для магнитных сил (см. уравнение 9.1).

Если электрический заряд двух тел соответственно q и q’, а расстояние между ними — d, тогда F — сила, действующая между ними (это может быть как сила притяжения, если заряды противоположные, так и сила отталкивания, если заряды одинаковы), может быть выражена так:

F = qq’/d2, (Уравнение 10.1)

при условии, что между зарядами находится вакуум.

В системе СГС расстояния измеряются в сантиметрах, а силы в динах. Если мы представим, что два равных заряда разделены расстоянием в 1 см и воздействуют друг на друга с силой в 1 дину, то величина электрического заряда — 1 электростатическая единица.

Самый маленький возможный заряд тела — заряд одного электрона[99]. Измерения показали, что он равен –4,8?10–10 электростатических единиц, где минус означает отрицательный заряд. Это значит, что тело, несущее заряд в 1 электростатическую единицу, содержит около 2 миллиардов лишних электронов.

Другая широко используемая единица заряда в системе МКС — кулон, названа она в честь физика. Кулон равен 3 миллиардам электростатических единиц. Тело, несущее отрицательный заряд в 1 кулон, содержит примерно 6 миллиардов избыточных электронов, а тело, несущее положительный заряд в 1 кулон, имеет такую же их нехватку.

Представьте себе два электрона на расстоянии 1 см. Так как заряд каждого –4,8?10–10 электростатических единиц, то общая сила (в данном случае отталкивания) между ними вычисляется с помощью уравнения 10.1, как равная (–4,8?10–10)2, или 2,25?10–10 дин.

Два электрона также воздействуют друг на друга гравитационной силой притяжения. Теперь известно, что масса электрона равна 9,1?10–28 граммов. Сила гравитационного притяжения равна Gmm'/d2, где G — гравитационная постоянная, которая равна 6,67?10–8 дина-см22 (см. ч. I). Гравитационная сила притяжения между электронами равна (9,1?10–28)2, умноженная на 6,67?10–8 или 5,5?10–62 дин. Теперь мы можем сравнить гравитационную и электрическую силы, разделив 2,25?10–10 на 5,5?10–62 Частное равно 4?1042. Это означает, что электрическая сила (или соответствующая магнитная сила в случае магнитов) где-то в 4 миллиона триллионов триллионов триллионов раз больше силы гравитации. Справедливо сказать, что сила гравитации — слабейшая сила, известная в природе.

Тот факт, что гравитация — подавляющая сила в мировом масштабе, происходит полностью из-за того, что мы имеем дело с огромными массами звезд и планет. Хотя все равно, если подумать только о том, что мы, с нашими слабыми мышцами, можем с легкостью поднимать предметы, несмотря на гравитационное притяжение всей Земли, и что то же самое может сделать маленький игрушечный магнит, становится ясно, как гравитационные силы немыслимо малы. И фактически, когда мы имеем дело с телами нормального размера, мы полностью пренебрегаем гравитационными силами между ними.

Электрически заряженные предметы служат источниками энергетических полей, которые аналогичны магнитным полям. Наравне с магнитными существуют и электрические силовые линии.

Как и магнитные, электрические силовые линии могут проходить сквозь то или иное вещество быстрее или медленнее, чем они прошли бы через равную толщу пустого пространства. Соотношение плотности потока электрических силовых линий, проходящих через среду, к плотности потока, проходящего через пустое пространство, — относительная диэлектрическая проницаемость. (Этот термин аналогичен относительной проницаемости в случае магнитных полей.)

В общем относительная диэлектрическая проницаемость изоляторов (непроводников) больше чем 1, в некоторых случаях — гораздо больше. Относительная диэлектрическая проницаемость воздуха 1,00054, в то время как резины — около 3, а слюды — около 7. Для воды это 78. Там, где относительная диэлектрическая проницаемость больше 1, электрические силовые линии собираются в веществе и более тесно проходят через него, чем они прошли бы через равный объем пустого пространства. По этой причине непроводники часто называют диэлектриками (греческий префикс обозначает «через», силовые линии проходят через них). Об относительной диэлектрической проницаемости чаще говорят как о диэлектрической постоянной.

Соответственно формулу Кулона для силы между двумя заряженными частицами можно переписать в более общем виде:

F = qq’/?d2, (Уравнение 10.2)

где ? диэлектрическая постоянная среды, разделяющей частицы (? — греческая буква «каппа»).

Электрические силы между заряженными частицами уменьшаются, если между ними помещен диэлектрик; они уменьшаются больше по мере возрастания его диэлектрической постоянной. Составляющие частицы такого вещества, как обычная поваренная соль, например, удерживаются электрическим притяжением. В воде, с ее необычайно высокой диэлектрической постоянной, эти силы соответственно уменьшаются, и, в частности, по этой причине соль быстро растворяется в воде (ее частицы, так сказать, быстро рассыпаются), и вообще вода является хорошим растворителем.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК