Электронвольт
Заряженную частицу можно ускорить, подвергнув ее действию электрического поля, направленного по ходу движения частицы. Чем выше потенциал этого электрического поля, тем выше ускорение и энергия частицы.
Частица с единичным зарядом, например электрон, под действием электрического поля напряжением 1 вольт получает заряд энергии, равный 1 электронвольту (сокращенно эв). 1 эв равен 1,6?10–12. Для более крупных зарядов используется килоэлектронвольт (Кэв). 1 Кэв равняется 1000 эв.
Существуют также мегаэлектронвольт (Мэв), равный миллиону электронвольт, и биллион электронвольт (Бэв)[134]. Биллион электронвольт равняется 1,6?10–8. В принципе это очень небольшое количество энергии, но для одной субатомной частицы оно просто огромно.
В последнее время в электронвольтах все чаще обозначают массу субатомных частиц. Масса электрона равна 9,1?10–28 граммов. По формуле Эйнштейна e = mc2 (см. ч. II) получаем энергетический эквивалент, равный 8,2?10–7 эрг, что, в свою очередь, равно 510 000 эв, или 0,51 Мэв.
Длину волны электромагнитного излучения также можно представить в электронвольтах. Согласно квантовой теории, e = h?, где e — энергия одного кванта электромагнитного излучения, эрг; h — постоянная Планка, эрг/сек, ? — частота излучения, Гц.
Таким образом, длина волны (обозначается ?, — «лямбда») равняется пройденному излучением за одну секунду в вакууме расстоянию (c), деленному на количество образовавшихся за это время волн, то есть частоту излучения ?:
? = c/? (Уравнение 9.2)
или
? = c/?. (Уравнение 9.3)
Поставив c/? в формулу квантовой теории e = h?, получим:
e = hc/? (Уравнение 9.4)
или
? = hc/e, (Уравнение 9.5)
где h равняется 6,62?10–27 эрг-с, а c — 3,00?1010 см в секунду, соответственно hc равняется 1,99?10–16 эрг. Приводим уравнение 9.5 к виду:
l = 1,99?10–16/e. (Уравнение 9.6)
Теперь, если мы подставим 1,6?10–12 эрг (один электрон вольт) вместо e в формуле 9.6, то получим 1,24?10–4 сантиметров. Другими словами, излучение длиной 1,24 микрона (инфракрасный спектр) состоит из протонов, энергия которых 1 эв.
Таким образом, 1 Кэв — это энергия излучения, длина волны которого в 1000 раз больше 1 эв, т. е. 1,24 миллимикрона, или 12,4 ангстрема. Это уже диапазон рентгеновского излучения. Точно так же 1 Мэв — это энергия излучения, длина волны которого 0,0124 ангстрема (диапазон гамма-лучей).
По формуле 9.6, запас энергии видимого света колеблется от 1,6 эв для красной части спектра и 3,2 эв для фиолетовой. Видимый свет и ультрафиолетовое излучение поглощаются и испускаются во время обычных химических реакций. Таким образом, во время обычных химических реакций используется энергия не более 1–5 эв. Основная сложность проведения ядерных реакций заключается в том, что для таких реакций энергии нужно гораздо больше — тысячи, даже миллионы электронвольт.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК