Магнитные полюса
Силы притяжения между телами, несомненно, наблюдались с доисторических времен, но (по крайней мере, так принято считать) первым из древних греков, кто систематически принялся за изучение сил притяжения, был Талес (640? — 546 до н.э.).
Одна из таких сил притяжения касалась железа и железной руды. Некоторые встречающиеся в природе виды железной руды (магнитный железняк), как обнаружилось, притягивали железо и, как могли заметить древние, больше ничего. Талес жил в городе Милет (на побережье Эгейского моря, ныне в Турции), и те образцы магнитного железняка, которые он изучал, предположительно были из окрестностей соседнего города Магнезии. Талес назвал его «магнезианским камнем», а притягивающие железо материалы получили соответственно название магниты, поскольку само явление получило название магнетизм.
Талес обнаружил, что янтарь (окаменевшая смола, которую греки называли «электрон»), если его натереть, тоже излучает силу притягивания. Она отличалась от магнетической силы, поскольку магнетизм действовал только на железо, а натертый янтарь — на любой легкий предмет: пух, перья, куски сухих листьев. В поздние века были найдены и другие, кроме янтаря, предметы, которые, будучи натертыми, проявляли подобные свойства, и в 1600 году английский физик и врач Уильям Гильберт (1540–1603) предположил, что все такие объекты можно называть «электрическими» (от греческого слова, означавшего «янтарь»). Отсюда и стало к этому явлению применяться слово «электричество».
Магнетизм, хотя и более ограниченная сила, казался в тех экспериментальных условиях, которые по большей части имелись в древности и в Средние века, гораздо более сильным. Следовательно, именно магнетизм тщательно изучали две тысячи лет после Талеса.
Например, было обнаружено, что свойства магнетизма могут передаваться. Если стальной сердечник вставить в естественный магнитный железняк, он сам становится магнитом и может притягивать куски железа, хотя раньше этого не делал.
Более того, если такую намагниченную стрелку положить на пробку и пустить плавать по воде или если закрепить ее на оси так, чтобы она могла свободно вращаться, обнаружилось, что иголка не принимала любое положение случайно, а ориентировалась строго определенным образом. Эта ориентация строго приближалась к линии север — юг. И еще — если один конец намагниченной иголки пометить каким-нибудь образом, быстро становилось очевидным, что один ее конец всегда показывал на север, а другой — всегда на юг.
Поскольку концы намагниченной иголки показывали, как казалось, на полюса Земли, то начали говорить о том ее конце, что показывал на север, как о северном полюсе магнита, а о втором — как о южном полюсе магнита.
Людям не могло не прийти в голову, что если северный полюс свободно движущейся намагниченной стрелки всегда показывает на север, то это же великолепный способ ориентироваться в пространстве! До тех пор днем ориентировались по Солнцу, ночью — по Полярной звезде, но это годилось только в хорошую погоду.
Предполагается, что китайцы использовали намагниченную стрелку в качестве указателя направления, когда пролагали пути через однообразные пустыни Средней Азии. Однако первое использование такой иголки в морских путешествиях отмечено среди европейцев в XII веке. В конце концов стрелку разместили на карте, по ободку которой были отмечены различные направления. Поскольку эти направления окружали ободок карты, намагниченная игла получила название компас (от англ. encompass — окружать).
Несомненно, компас принадлежит к тем простым изобретениям, которые изменили мир. Люди могли пересекать обширные океаны и без компаса (около двух тысяч лет назад полинезийцам удалось колонизировать разбросанные по Тихому океану острова без всяких компасов), но компас значительно помогал им. И не случайно именно после изобретения компаса, когда европейцы стали смело выплывать в Атлантический океан, начался «век Великих географических открытий».
К полюсам магнита железо притягивается с наибольшей силой. Если намагниченную иголку закопать в металлические опилки и потом поднять, опилки гуще всего соберутся на концах. В этом смысле магнит любой формы имеет полюса, которые можно разметить подобным образом. И полюса не образуются поодиночке. Если можно определить северный полюс, то можно определить и южный, и наоборот.
И не сложно отличить северный полюс от южного, даже не располагая магнит на карте. Предположим, что две намагниченные стрелки свободно сориентировались в направлении север-юг и что определен северный полюс каждой. Если северный полюс одного магнита поднести к южному полюсу другого, два полюса будут взаимно притягиваться и, если дать им соприкоснуться, так и будут соприкасаться. Чтобы разделить их, придется приложить силу.
С другой стороны, если северный полюс одного магнита поднести к северному полюсу другого, возникнет взаимное отталкивание магнитов. То же самое произойдет, если южный полюс одного поднести к южному полюсу другого. Если магнитам дать свободно вращаться, они развернутся и спонтанно переориентируются так, чтобы северный полюс одного смотрел на южный полюс другого. Если северный полюс одного прижать к северному полюсу другого или южный к южному, то они разделятся, как только магниты отпустят. Чтобы оставить их в контакте, потребуется приложить силу.
Итог можно подвести так: одинаковые полюса отталкиваются, разные полюса притягиваются.
Когда северный полюс магнита определен, его можно использовать для определения полюсов любого другого магнита.
Любой полюс, к которому он притягивается, — южный полюс. Любой полюс, от которого он отталкивается, — северный полюс. Впервые это было установлено в 1269 году одним из немногих экспериментаторов Средневековья французом Петером Перегринусом.
(В свете этого, наверное, правильнее было бы называть северный полюс магнита, притягиваемый Северным полюсом Земли, южным полюсом. Однако тут уже поздно что-то менять.)
Легко увидеть, что сила, исходящая из магнитного полюса, изменяется обратно пропорционально расстоянию. Если дать северному полюсу магнита приблизиться к южному полюсу другого, то можно почувствовать, как сила притяжения становится сильнее. Таким же образом, если подтолкнуть северный полюс одного магнита к северному полюсу другого, можно почувствовать, как сила отталкивания становится сильнее. Чем меньше расстояние, тем больше сила.
Конечно же мы не можем говорить отдельно о северном полюсе или южном полюсе. Каждый северный полюс сопровождается южным. Следовательно, если северный полюс магнита А притянут к южному полюсу магнита В, то южный полюс магнита А должен одновременно отталкивать южный полюс магнита В. Это, кажется, осложняет ситуацию.
Однако если использовать длинные тонкие магниты, то источник затруднений сводится к минимуму. Северный полюс магнита А близок к южному полюсу магнита В, в то время как южный полюс магнита А (на другом конце длинного куска металла) находится достаточно далеко. Создающая помехи отталкивающая сила южного полюса ослаблена из-за этого дополнительного расстояния и может быть легко проигнорирована.
В 1785 году французский физик Шарль Огюстен де Кулон (1736–1806) измерил силу между магнитными полюсами на различных расстояниях, используя для этих целей тонкие перекрученные весы. Так, если одна магнитная стрелка подвешена на тонкой нити, притяжение (или отталкивание) другого магнита к одному из полюсов подвешенной стрелки заставит подвешенную стрелку несколько перекрутиться. Сделав это, она перекрутит и нить, на которой подвешена. Нить будет сопротивляться дальнейшему перекручиванию с силой, зависящей от того, насколько она уже перекручена.
Заданная сила всегда будет производить заданное перекручивание, а из этого перекручивания можно будет высчитать и размер неизвестной силы. (Пятнадцать лет спустя Кавендиш использовал подобные весы для измерения слабых гравитационных сил, см. ч. I; а столетием позже Лебедев определял с их помощью давление света, см. гл. 8.)
Производя свои измерения, Кулон обнаружил, что магнетическая сила изменялась обратно пропорционально квадрату расстояния, как и в случае с гравитационной силой. Так, магнитная сила падала до одной четвертой от своего первоначального значения, когда расстояние возрастало вдвое, и увеличивалась в девять раз, когда расстояние сокращалось до трети своей изначальной величины. Это оставалось верным, независимо от того, рассматривалась ли сила притяжения или отталкивания.
Это может быть выражено математически следующим образом: если магнитную силу между полюсами принять за F, силу двух полюсов за m и m’ а расстояние между ними за d, то:
F = mm'/d2. (Уравнение 9.1)
Если расстояние измерять в сантиметрах, то сила будет определяться в динах (где одна дина определяется как 1 грамм на сантиметр в секунду за секунду, см. ч. I). Предположим затем, что два полюса равной интенсивности разделены расстоянием в 1 см и что сила магнитного притяжения — 1 дина. Тогда оказывается, что m = m', следовательно, mm' = m2. Тогда, раз и F и d взяты равными 1, то из уравнения 9.1 следует, что в этих условиях m2 = 1 и, следовательно, m = 1.
Значит, можно говорить о полюсных единицах как о представляющих полюса такой силы, что, будучи разделенными на 1 сантиметр, они испускают магнитную силу (притяжения или отталкивания — не важно) в 1 дину. В уравнении 9.1, где F измеряется в динах, а d — в сантиметрах, т и m' измеряются в полюсных единицах.
Если магнитное поле в 5 полюсных единиц выдает силу в 10 дин на полюсную единицу в определенной точке, то интенсивность магнитной силы — 2 дины на магнитную единицу. Одна дина на магнитную единицу определяется как 1 эрстед (в честь датского физика Ханса Кристиана Эрстеда, вклад которого в изучение магнетизма будет изложен в гл. 12). Эрстед — единица измерения магнитной силы на полюсную единицу, или напряженности магнитного поля, что обычно обозначается как H. Тогда мы можем сказать, что H = F/m, или
F = mH, (Уравнение 9.2)
где F — магнитная сила, измеряемая в динах; m — значение в полюсных единицах; Н — магнитная напряженность в эрстедах.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК