Синтетические элементы

Появление в 1930-х годах новых методов стимулирования ядерных реакций привело не только к получению не встречающихся в природе изотопов, но и к созданию не существующих в природе элементов.

В 1930-х годах в таблице элементов с атомными числами от 1 до 92 включительно оставались всего четыре незаполненные клетки — 43, 61, 85 и 87.

Первым обнаружили элемент с атомным числом 43. Лоуренс, изобретатель циклотрона, подверг атомы молибдена бомбардировке дейтронами, в результате чего в ходе (d, n)-реакции образовался элемент номер 43:

42Mo98 + 1Н2 ? 43Х99 + 0n1 (Уравнение 10.11)

или

Mo98 (d, n) X99

В 1937 году образец облученного молибдена попал в руки к итальянскому физику Эмилио Сегре (1905–1989). Химическими способами он протестировал образец на предмет предполагаемого радиационного излучения элемента номер 43. Излучение действительно существовало, и таким образом было доказано, что элемент 43 действительно присутствует в молибдене. Так как этот элемент был первым элементом, созданным в результате вызванных человеком ядерных реакций, он получил название (технеций («искусственный»).

Технеций стал не только первым созданным человеком элементом, но и первым легким элементом (то есть атомное число которого меньше 84), не имеющим ни одного стабильного изотопа. Существуют не менее трех изотопов технеция с достаточно длинным периодом полураспада: технеций–97 — 2 600 000 лет, технеций–98 — 1 500 000 лет и технеций–99 — 210 000 лет. Тем не менее абсолютно стабильных изотопов технеция не существует. Так как продолжительность периодов полураспада мала по сравнению с возрастом Земли и так как изотопы технеция не являются членами какого-либо радиоактивного ряда, в земной коре технеций в измеримом количестве не встречается.

В 1939 году французский химик Маргарита Пере в продуктах распада урана–235 обнаружила изотоп элемента 87. Она назвала его франций, по названию своей родной страны. Чуть позже в радиоактивных рядах был обнаружен элемент 85, и уже в 1940 году его удалось получить искусственным путем в результате бомбардировки альфа-частицами атомов висмута. Элемент получил название астатин («нестабильный»). Реакция выглядит так:

83Bi209 + 2He4 ? 85At211 + 0n1 + 0n1 (Уравнение 10.12)

или

Bi209 (?, 2n)At211.

(Переехавший к этому моменту в США Сегре стал один из членов группы ученых, которым удалось выделить астатин.)

Элемент номер 61 был открыт в 1948 году (при обстоятельствах, о которых я расскажу позже) командой американского химика Чарльза Кориела. Элемент получил название прометий. Это был уже второй случай элемента без стабильных изотопов. Период полураспада самого долгоживущего изотопа — прометия–145 — составлял всего 18 лет.

Таким образом, к 1948 году периодическую таблицу наконец удалось заполнить полностью. Однако была открыта верхняя часть таблицы. Ферми, которому не давала покоя возможность путем бомбардировки нейтронами поднимать атомное число ядра-мишени на 1–2 единицы, начиная с 1934 года занимался бомбардировкой атомов урана нейтронами.

Он предположил, что, возможно, уран–239 образуется из урана–238. Испуская бета-частицы, уран–239, возможно, становится элементом 93, а затем элементом 94. Ферми решил, что он уже показал этот процесс, и поэтому назвал элемент 93 «ураном X».

Когда ученые открыли возможность деления ядра урана (см. ниже), оказалось, что заслуги Ферми не ограничиваются выделением элемента 93, и на какое-то время о элементе 93 забыли. Однако когда страсти вокруг деления ядра немного поутихли, ученые вновь вернулись к элементу 93. Образование урана–239 являлось хоть и не основным, но все же результатом бомбардировки атомов урана нейтронами. Реакция действительно имела место.

Это было доказано в 1940 году американским физиком Эдвином Макмилланом и его коллегой, американским химиком Филипом-Хауге Эйблсоном. Они обнаружили источник радиоактивного излучения с периодом полураспада 2,3 дня, атомным числом 93 и массовым числом 239. Так как уран был назван в честь планеты Уран, то элемент «выше» урана был назван нептуний, в честь планеты Нептун, располагающейся «выше» Урана.

Казалось очень вероятным, что нептуний–239 являлся бета-излучателем и распадался до элемента с атомным числом 94. К несчастью, радиоактивность образующегося в результате этого изотопа была настолько мала, что в малых количествах его было практически невозможно обнаружить. Однако в том же году Макмиллану и его новому ассистенту, американскому химику Гленну Сиборгу, в результате бомбардировки атомов урана дейтронами удалось получить нептуний–238:

92U238 + 1H2 ? 93Np238 + 0n1 + 0n1 (Уравнение 10.13)

или

U238 (d, 2n)Np238.

Нептуний–238 испускал бета-частицу и становился изотопом элемента 94 с достаточно высокой для обнаружения радиоактивностью. Новый элемент получил название плутоний, в честь планеты Плутон, находящейся еще дальше, чем Нептун.

Как только плутоний удалось получить в достаточном количестве, его подвергли бомбардировке альфа-частицами, в 1944 году исследовательская группа во главе с Сиборгом получила изотопы элемента 95 (америций, в честь Америки) и 96 (кюрий, в честь Кюри).

Группе Сиборга удалось получить элементы и с большим атомным числом. В 1949-м и 1950 годах путем бомбардировки америция и кюри альфа-частицами были получены элементы 97 и 98.

Элемент 97 получил название берклий, а элемент 98 — калифорний, в честь города Беркли в штате Калифорния, где находилась исследовательская лаборатория.

В лабораторных условиях элементы 99 и 100 удалось получить в 1954 году, однако двумя годами ранее, в 1952 году, изотопы этих элементов были обнаружены в осадках после взрыва водородной бомбы во время испытаний на острове в Тихом океане. Ко времени подтверждения и опубликования результатов открытий Эйнштейн и Ферми уже умерли, и в их честь элементы 99 и 100 были названы эйнштейний и фермий.

В 1955 году в результате бомбардировки эйнштейния альфа-частицами был получен элемент 101, менделевий, названный так в часть создателя периодической таблицы Менделеева. В 1957 году институт Нобеля в Стокгольме объявил об открытии элемента 102, нобелия[137], а в 1961 году был обнаружен элемент 103, названный лавренцием (лоуренсием) в честь изобретателя циклотрона, умершего за несколько лет до этого. В 1964 году советские физики объявили о получении элемента 104, но эта информация подтвердилась не сразу. 

Таблица 11.

ТРАНСУРАНОВЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ

Атомное число Химический элемент Массовое число наиболее долгоживущего изотопа Период полураспада 93 Нептуний [237] 2 140 000 лет 94 Плутоний [242] 37 900 лет 95 Америций [243] 7650 лет 96 Кюрий [247] Ок. 40 000 000 лет 97 Берклий [247] Ок. 10 000 лет 98 Калифорний [251] Ок. 800 лет 99 Эйнштейний [254] 480 дней 100 Фермий [253] Ок. 4,5 дня 101 Менделевий [256] 1,5 часа 102 Нобелий [253] Ок. 10 минут 103 Лоуренсий [257] 8 секунд

Элементы выше урана называются трансурановыми. Удалось получить более сотни изотопов этих элементов. В табл. 11 представлены наиболее долгоживущие из известных изотопов этих элементов.

Основной теоретический интерес к этим элементам заключается в том, что они Пролили свет на верхнюю часть периодической таблицы. До открытия трансурановых элементов, на основе некоторых опытных химических данных, торий в периодической таблице поместили под гафнием, протактиний — под танталом, а уран — под вольфрамом.

Согласно этому принципу, открытый нептуний следовало бы поместить перед рением. Однако химические свойства нептуния были аналогичны свойствам урана и трансурановых элементов. Оказалось (Сиборг первым предположил это), что элементы начиная с актиния образовывали новый ряд «редкоземельных» элементов (см. гл. 1), соответственно их нужно поместить под первым рядом редкоземельных элементов (от лантана и далее), что и сделано в периодической таблице (см. гл. 1).

Первый ряд, от лантана до лютеция включительно, сегодня называют лантаноидами, по названию первого члена этого ряда. По аналогии второй ряд, от актиния до лавренция включительно, называют актинидами. Лавренций является последним членом ряда актинидов, и химики уверены, что, как только элемент 104 удастся получить в достаточном для изучения его химических свойств количестве, окажется, что он по своим свойствам будет похож на гафний.

Хотя периоды полураспада некоторых изотопов трансурановых элементов и длинные по человеческим меркам, по меркам геологическим все они слишком короткие. (Тем не менее следы нептуния и плутония были найдены в урановых рудах. Они появились в результате взаимодействия нейтронов и урана, вызванного ядерной реакцией, возникающей под действием космических излучений высокой энергии.)

Особенный интерес представляет нептуний–237. В результате деления его массового числа на 4 остаток равен 1, значит, нептуний–237 принадлежит к ряду элементов 4x + 1. Элементы этого радиоактивного ряда в природе не встречаются (см. гл. 8). Период полураспада нептуния–237 более 2 миллионов лет, и, по последним сведениям, это самый долгоживущий элемент данного ряда. Значит, нептуний–237 вполне может быть родительским элементом нептуниевого ряда. Его дочерние элементы не повторяют ни один из элементов трех других радиоактивных рядов (см. табл. 12).

Основной чертой нептуниевого ряда является то, что он, в отличие от трех других рядов, заканчивается висмутом, а не свинцом. Раз родительский элемент не дошел до наших дней, то не дошли и менее долгоживущие дочерние элементы. Из всего ряда встречается только конечный стабильный изотоп — висмут–209.

Таблица 12.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК