Сокращение Фитцджеральда

Естественно, предпринимались попытки объяснить результаты эксперимента Михельсона — Морли в рамках теории эфира. Наиболее успешная попытка принадлежала ирландскому физику Джорджу Франсису Фитцджеральду (1851–1901), который в 1893 году предположил, что все предметы укорачиваются в направлении своего абсолютного движения, так сказать сплющиваясь под воздействием эфирного ветра. Размер такого «укорачивания» будет возрастать вместе со скоростью абсолютного движения, поскольку давление эфирного ветра тоже будет возрастать.

Фитцджеральд предположил, что для любой заданной скорости длина (l) предмета или расстояния между предметами будет фиксированным образом относиться к длине L0 того же самого предмета или расстояния в состоянии покоя; L0 можно назвать длиной покоя. Это отношение выражается формулой ?(l2v2/с2), где c — скорость света в вакууме, v — скорость тела, и то и другое — по отношению к эфиру. Другими словами,

Коэффициент Фитцджеральда равен знаменателю выражения из уравнения 6.5, которое представляет отношение расстояний, проходимых двумя лучами в интерферометре. Будучи умноженным на коэффициент Фитцджеральда, значение уравнения 6.5 становится равным 1.

Расстояние, проходимое лучом света, движущимся по эфирному ветру и против него, теперь уменьшается ровно на такую длину, которую луч проходит за то же время, за которое и луч, движущийся поперек эфирного ветра. Другими словами, существование эфирного ветра заставит один луч тратить большее время, но существование сокращения Фитцджеральда, источником которого является тот же самый эфир, позволяет лучу совершить свой путь за то же самое время, которое требовалось бы ему, если бы никакого эфирного ветра не существовало.

Эти два эффекта эфирного ветра взаимно аннулируют друг друга, и это напомнило физикам отрывок из стихотворения Льюиса Кэрролла, герой которого собирался покрасить усы в зеленый цвет и прикрыть их большим веером, чтобы никто этого не увидел.

Книга Кэрролла была написана в 1872 году, поэтому вряд ли он имел в виду сокращение Фитцджеральда, но описано оно здесь один к одному.

На обычных скоростях это сокращение чрезвычайно мало. Земля движется по своей орбите вокруг Солнца со скоростью 30 километров в секунду (по отношению к Солнцу), что по земным стандартам является немалой скоростью. Если v принять равным 30 и подставить это значение в уравнение Фитцджеральда, мы получим ?(1 - 302/3000002), что равняется 0,999995. В таком случае сокращенный диаметр Земли будет равен 0,999995 от ее диаметра, перпендикулярного этому направлению (если, конечно, принять Землю за идеальную сферу). Величина этого сокращения составит 62,5 метра.

Если измерить диаметр Земли по всем направлениям и установить то направление, в котором ее диаметр сокращен, можно будет установить направление движения Земли по отношению к эфиру. Более того, исходя из величины этого сокращения можно вычислить абсолютную скорость Земли по отношению к эфиру.

Но есть затруднение. Оно заключается не в малой величине сокращения, поскольку не важно, насколько оно мало, если его можно обнаружить в принципе. Дело в том, что его нельзя обнаружить, находясь на Земле. Когда мы находимся на Земле, все инструменты, которые мы могли бы использовать для измерения диаметра Земли, находятся в том же движении, что и Земля, и подвергаются тому же сокращению. Сокращенный диаметр измерялся бы сокращенными инструментами, и сокращение не было бы обнаружено.

У нас могло бы что-нибудь получиться, если бы мы сошли с Земли и, не разделяя ее движения, измерили бы ее диаметр по всем направлениям (очень точно), пока она пролетала мимо. Это не очень реально, но только так это было бы выполнимо.

Чтобы сделать это на практике, надо найти что-то, что двигалось бы очень быстро, и при этом чтобы мы не разделяли этого движения. В качестве таких объектов подошли бы субатомные частицы[93], имеющие скорость относительно поверхности Земли от 10 000 км/с до скоростей, близких к световым.

Сокращение Фитцджеральда на таких скоростях становится очень значительным. Например, скорость может быть достаточно высокой, чтобы длина движущегося тела сократилась вдвое. В этом случае ?(12 – v22) = ?, и если мы решим это уравнение для v, то получим его равным ?(3с2/4). Поскольку с = 300 000 км/с, то ?(3с2/4) = 260 000 км/с. На этой огромной скорости, в 7/8 света, предмет сокращается до половины своей длины, а некоторые субатомные частицы движутся еще быстрее.

На еще более высоких скоростях сокращение становится еще более заметным. Предположим, что скорость тела становится равной скорости света. При таких условиях v равно с, и коэффициент Фитцджеральда принимает значение ?(12 – c2/c2), что равняется 0. Это означает, что по уравнению 6.6 длина движущегося тела (L) становится равной его длине покоя (L0), умноженной на нуль. Другими словами, на скорости света все тела вне зависимости от их длины покоя сокращаются совершенно и становятся бесконечно тонкими блинами.

Но что, если скорость света будет превышена? В этом случае v становится больше, чем c, выражение v2/c2 становится больше 1 и выражение 1 — v2/c2 становится отрицательным числом. Пропорция Фитцджеральда становится квадратным корнем из отрицательного числа, а это то, что математики именуют «мнимым числом». Длина, представляемая мнимым числом, безусловно, имеет математическую ценность, но работать с такой физической величиной невозможно.

Это было первым знаком того, что скорость света должна иметь какое-то важное значение для Вселенной — как наивысшая, в каком-то смысле, скорость. На самом деле никогда не наблюдалось, чтобы субатомные частицы двигались со скоростью выше, чем скорость света, в вакууме, хотя и наблюдались скорости выше чем 0,99 скорости света. На таких скоростях субатомные частицы должны были бы истончиться в направлении своего движения, но, увы, они так малы, что невозможно на практике измерить их длину, когда они пролетают мимо, и нельзя сказать, сокращены они или нет. Однако, если для проверки наличия пропорции Фитцджеральда нельзя использовать субатомные частицы, можно подойти по-другому…

Сокращение Фитцджеральда дополнил, придав ему правильную математическую форму, голландский физик Хендрик Антон Лоренц (1853–1928), поэтому это явление иногда называют «сокращение Лоренца — Фитцджеральда».

Лоренц продолжил доказательство того, что, если применять сокращение Фитцджеральда к субатомным частицам, несущим электрический заряд, можно сделать вывод, что масса тела должна возрастать в той же пропорции, в которой сокращается его длина. Короче, если его масса в движении равна m, а масса покоя — m0, то

m = m0/?(1 - v2/c2). (Уравнение 6.7)

И опять же, прибавление массы на обычных скоростях очень мало. На скорости в 260 000 км/с масса движущегося тела увеличивается в два раза, а на более высоких скоростях — еще больше. Когда скорость движущегося тела становится равной скорости света, v = c, то уравнение 6.7 приобретает вид: m = m0/0. Это означает, что масса движущегося тела становится больше любой доступной величины. (Обычно говорят, что масса движущегося тела становится бесконечной.) И опять же скорости больше световой должны приводить к появлению масс, выражаемых мнимыми числами, для которых не предвидится физических интерпретаций. Снова подчеркивается ключевая важность скорости света в вакууме.

Но очень быстро движущиеся субатомные частицы, развивающие скорости вплоть до 0,99 скорости света, должны значительно увеличивать свою массу; и если длина субатомных частиц не может быть измерена по мере их пролетания мимо, их массу легко можно измерить.

Масса таких частиц может быть получена путем измерения их инерции, то есть силы, необходимой для придания им ускорения. На самом деле именно количество инерции Ньютон использовал для определения массы в своем втором законе (см. ч. I).

Полет заряженных частиц можно искривить в магнитном поле. Таким образом, магнитное поле придает частицам ускорение, и радиус искривления их полета и есть показатель величины инерции частицы, следовательно, и ее массы.

Из искривления пути частицы, движущейся на малой скорости, можно высчитать массу частицы и затем предсказать, как ее путь должен искривиться, проходя через то же самое магнитное поле на более высоких скоростях при условии, что его масса окажется прежней. Действительные же измерения искривления пути частиц, движущихся на высоких скоростях, показали, что эти искривления были менее значительными, чем ожидалось. Это можно объяснить увеличением массы при увеличении скорости, и, когда это было сделано, получившиеся данные четко укладывались в уравнение Лоренца.

Веер выпал, и зеленые усы оказались у всех на виду. Уравнение Лоренца совпало с наблюдаемыми фактами. Поскольку оно было основано на уравнении Фитцджеральда, то явление сокращения тоже оказалось совпадающим с фактами, и это объяснило негативные результаты эксперимента Михельсона — Морли.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК