§ 6. Относительность магнитных и электрических полей

We use cookies. Read the Privacy and Cookie Policy

Когда мы сказали, что магнитная сила на заряд пропорциональна его скорости, вы, наверное, подумали: «Какой скорости? По отношению к какой системе отсчета?» Из определения В, данного в начале этой главы, на самом деле ясно, что этот вектор будет разным в зависимости от выбора системы отсчета, в которой мы определяем скорость зарядов. Но мы ничего не сказали о том, какая же система подходит для определения магнитного поля.

Оказывается, что годится любая инерциальная система. Мы увидим также, что магнетизм и электричество — не независимые вещи, они всегда должны быть взяты в совокупности как одно полное электромагнитное поле. Хотя в статическом случае уравнения Максвелла разделяются на две отдельные пары: одна пара для электричества и одна для магнетизма, без видимой связи между обоими полями, тем не менее в самой природе существует очень глубокая взаимосвязь между ними, возникающая из принципа относительности. Исторически принцип относительности был открыт после уравнений Максвелла. В действительности же именно изучение электричества и магнетизма привело Эйнштейна к открытию принципа относительности. Но посмотрим, что наше знание принципа относительности подскажет нам о магнитных силах, если предположить, что принцип относительности применим (а в действительности так оно и есть) к электромагнетизму.

Давайте подумаем, что произойдет с отрицательным зарядом, движущимся со скоростью v0 параллельно проволоке, по которой течет ток (фиг. 13.10).

Фиг. 13.10. Взаимодействие проволоки с током и частицы с зарядом q, рассматриваемое в двух системах координат. а — в системе S покоится проволока; б — в системе S' покоится заряд.

Постараемся разобраться в происходящем, используя две системы отсчета: одну, связанную с проволокой, как на фиг. 13.10, а, а другую — с частицей, как на фиг. 13.10, б. Мы будем называть первую систему отсчета S, а вторую S'.

В системе S на частицу явно действует магнитная сила. Сила направлена к проволоке, поэтому, если заряду ничего не мешает, его траектория загнется в сторону проволоки. Но в системе S' магнитной силы на частицу быть не может, потому что скорость частицы равна нулю. Что же, следовательно, она так и будет стоять на месте? Увидим ли мы в разных системах разные вещи? Принцип относительности утверждает, что в системе S' мы увидели бы тоже, как частица приближается к проволоке. Мы должны попытаться понять, почему такое могло бы произойти.

Вернемся к нашему атомному описанию проволоки, по которой идет ток. В обычном проводнике, вроде меди, электрические токи возникают за счет движения части отрицательных электронов (называемых электронами проводимости), тогда как положительные ядерные заряды и остальные электроны остаются закрепленными внутри материала. Пусть плотность электронов проводимости есть ?, а их скорость в системе S есть v. Плотность неподвижных зарядов в системе S есть ?+, что должно быть равно ?- с обратным знаком, потому что мы берем незаряженную проволоку. Поэтому вне проволоки электрического поля нет, и сила на движущуюся частицу равна просто

Используя результат, найденный нами в уравнении (13.18) для магнитного поля на расстоянии r от оси проволоки, мы заключаем, что сила, действующая на частицу, направлена к проволоке и равна по величине

С помощью уравнений (13.4) и (13.5) ток I может быть записан как ?+vA, где А — площадь поперечного сечения проволоки. Тогда

(13.20)

Мы могли бы продолжить рассмотрение общего случая произвольных скоростей v и v0, но ничуть не хуже будет взять частный случай, когда скорость v0 частицы совпадает со скоростью v электронов проводимости. Поэтому мы запишем v=v0, и уравнение (13.20) приобретет вид

(13.21)

Теперь обратимся к тому, что происходит в системе S', где частица покоится и проволока бежит мимо нее (влево на фиг. 13.10, б) со скоростью v. Положительные заряды, движущиеся вместе с проволокой, создадут около частицы некоторое магнитное поле В'. Но частица теперь покоится, так что магнитная сила на нее не действует! Если и возникает какая-то сила, то она должна появиться за счет электрического поля. Выходит, что движущаяся проволока создает электрическое поле. Но она может это сделать, только если она кажется заряженной; должно получаться так, чтобы нейтральная проволока с током казалась заряженной, если ее привести в движение.

Нужно в этом разобраться. Попробуем вычислить плотность зарядов в проволоке в системе S', пользуясь тем, что мы знаем о ней в системе S. На первый взгляд можно было бы подумать, что плотности одинаковы, но из гл. 15 (вып. 2) мы знаем, что при переходе от одной системы к другой длины меняются, следовательно, объемы также изменятся. Поскольку плотности зарядов зависят от объема, занимаемого зарядами, плотности будут также меняться.

Прежде чем определить плотности зарядов в системе S', нужно знать, что происходит с электрическим зарядом группы электронов, когда заряды движутся. Мы знаем, что кажущаяся масса частицы приобретает множитель 1/?(1-v2/c2). Происходит ли что-нибудь подобное с ее зарядом? Нет! Заряды никогда не меняются независимо от того, движутся ли они или нет. Иначе мы не могли бы наблюдать на опыте сохранение полного заряда.

Возьмем кусок вещества, например проводника, и пусть он вначале незаряжен. Теперь нагреем его. Поскольку масса электронов иная, чем у протонов, скорости электронов и протонов изменятся по-разному. Если бы заряд частицы зависел от скорости частицы, которая его переносит, то в нагретом куске заряды электронов и протонов не были бы скомпенсированы. Кусок материала при нагревании становился бы заряженным.

Мы видели раньше, что очень малое изменение заряда у каждого из электронов в куске привело бы к огромным электрическим полям. Ничего подобного никогда не наблюдалось.

Кроме того, можно заметить, что средняя скорость электронов в веществе зависит от его химического состава. Если бы заряд электрона менялся со скоростью, суммарный заряд в куске вещества изменялся бы в ходе химической реакции. Как и раньше, прямое вычисление показывает, что даже совсем малая зависимость заряда от скорости привела бы в простейших химических реакциях к огромным полям. Ничего похожего не наблюдалось, и мы приходим к выводу, что электрический заряд отдельной частицы не зависит от состояния движения или покоя.

Итак, заряд частицы q есть инвариантная скалярная величина, не зависящая от системы отсчета. Это означает, что в любой системе плотность зарядов у некоторого распределения электронов просто пропорциональна числу электронов в единице объема. Нам нужно только учесть тот факт, что объем может меняться из-за релятивистского сокращения расстояний.

Применим теперь эти идеи к нашей движущейся проволоке. Если взять проволоку длиной L0, в которой плотность неподвижных зарядов есть ?0, то в ней будет содержаться полный заряд Q=?0L0A0. Если те же заряды движутся в другой системе со скоростью v, то они все будут находиться в куске материала меньшей длины

(13.22)

но того же сечения A0, поскольку размеры в направлении, перпендикулярном движению, не меняются (фиг. 13.11).

Фиг. 13.11. Если распределение заряженных частиц имеет плотность зарядов р0, то с точки зрения системы, движущейся с относительной скоростью v, плотность зарядов будет равна ?=?0/?(1 — v22).

Если через ? обозначить плотность зарядов в системе, где они движутся, то полный заряд Q будет ?LA0. Но это должно быть также равно ?0L0А, потому что заряд в любой системе одинаков, следовательно, ?L=?0L0, или с помощью (13.22)

(13.23)

Плотность зарядов движущейся совокупности зарядов меняется таким же образом, как и релятивистская масса частицы.

Применим теперь этот результат к плотности положительных зарядов ?+ в нашей проволоке. Эти заряды покоятся в системе S. Однако в системе S', где проволока движется со скоростью v, плотность положительных зарядов становится равной

(13.24)

Отрицательные заряды в системе S' покоятся, поэтому их плотность в этой системе есть «плотность покоя» ?0. В уравнении (13.23) ?'0=?'-, потому что их плотность зарядов равна ?-, если проволока покоится, т. е. в системе S, где скорость отрицательных зарядов равна v. Тогда для электронов проводимости мы получаем

(13.25)

или

(13.26)

Теперь мы можем понять, почему в системе S' возникают электрические поля: потому что в этой системе в проволоке имеется результирующая плотность зарядов ?', даваемая формулой

С помощью (13.24) и (13.26) имеем

Поскольку покоящаяся проволока нейтральна, ?-=-?+, получаем

(13.27)

Наша движущаяся проволока заряжена положительно и должна создавать поле Е' в точке, где находится внешняя покоящаяся частица. Мы уже решали электростатическую задачу об однородно заряженном цилиндре. Электрическое поле на расстоянии r от оси цилиндра есть

(13.28)

Сила, действующая на отрицательно заряженную частицу, направлена к проволоке. Мы имеем силу, направленную одинаково в обеих системах; электрическая сила в системе S' направлена так же, как магнитная сила в системе S. Величина силы в системе S' равна

(13.29)

Сравнивая этот результат для F' с нашим результатом для F в уравнении (13.21), мы видим, что величины сил с точки зрения двух наблюдателей почти одинаковы. Точнее,

(13.30)

поэтому для малых скоростей, которые мы рассматриваем, обе силы одинаковы. Мы можем сказать, что по меньшей мере для малых скоростей магнетизм и электричество суть просто «две разные стороны одной и той же вещи».

Но оказывается, что все обстоит даже еще лучше, чем мы сказали. Если принять во внимание тот факт, что силы также преобразуются при переходе от одной системы к другой, то окажется, что оба способа наблюдения за происходящим дают на самом деле одинаковые физические результаты при любой скорости.

Чтобы это увидеть, можно, например, задать вопрос: какой поперечный импульс приобретет частица, на которую в течение некоторого времени действовала сила? Мы знаем из вып. 2, гл. 16, что поперечный импульс частицы должен быть один и тот же как в системе S, так ив системе S'. Обозначим поперечную координату у и сравним ?рy и ?р'y. Используя релятивистски правильное уравнение движения F=dp/dt, мы ожидаем, что за время ?t наша частица приобретет поперечный импульс ?рy в системе S, даваемый выражением

(13.31)

В системе S' поперечный импульс будет равен

(13.32)

Мы должны сравнивать ?рy и ?р'y, конечно, для соответствующих интервалов времени ?t и ?t'. В гл. 15 (вып. 2) мы видели, что интервалы времени, относящиеся к движущейся частице, кажутся длиннее интервалов в системе покоя частицы. Поскольку наша частица первоначально была в покое в системе S', то мы ожидаем, что для малых ?t

(13.33)

и все получается великолепно. Согласно (13.31) и (13.32),

и если скомбинировать (13.30) и (13.33), то это отношение равно единице.

Вот и выходит, что мы получаем один и тот же результат, независимо от того, анализируем ли мы движение летящей рядом с проволокой частицы в системе покоя проволоки или в системе покоя частицы. В первом случае сила была чисто «магнитной», во втором — чисто «электрической». Оба способа наблюдения показаны на фиг. 13.12 (хотя во второй системе еще есть и магнитное поле В', оно не воздействует на неподвижную частицу).

Фиг. 13.12. В системе S плотность зарядов есть нуль, а плотность тока равна j. Есть только магнитное поле. В системе S' плотность зарядов равна р', а плотность тока j'. Магнитное поле здесь равно В' и существует электрическое поле Е'.

Если бы мы выбрали еще одну систему координат, мы бы нашли некую другую смесь полей E и В. Электрические и магнитные силы составляют части одного физического явления— электромагнитного взаимодействия частиц. Разделение этого взаимодействия на электрическую и магнитную части в большой степени зависит от системы отсчета, в которой мы описываем взаимодействие. Но полное электромагнитное описание инвариантно; электричество и магнетизм, вместе взятые, согласуются с принципом относительности, открытым Эйнштейном.

Раз электрические и магнитные поля появляются в разных соотношениях при изменении системы отсчета, мы должны проявлять осторожность в обращении с полями Е и В. Если, например, мы говорим о «линиях» Е или В, то не нужно преувеличивать реальность их существования. Линии могут исчезнуть, если мы захотим увидеть их в другой системе координат. Например, в системе S' имеются линии электрического поля, однако мы не видим их «движущимися мимо нас со скоростью v в системе S». В системе S линий электрического поля нет вообще! Поэтому бессмысленно говорить что-нибудь вроде: «Когда я двигаю магнит, он несет свое поле с собой, поэтому линии поля В тоже движутся». Нет никакого способа сделать вообще осмысленным понятие о «скорости движущихся линий поля».

Поля суть способ описания того, что происходит в некоторой точке пространства. В частности, Е и В говорят нам о силах, которые будут действовать на движущуюся частицу. Вопрос «чему равна сила, действующая на заряд со стороны движущегося магнитного поля?» не имеет сколько-нибудь точного содержания. Сила дается величинами Е и В в точке заряда, и формула (13.1) не изменится, если источник полей Е или В движется (изменятся в результате движения как раз значения Е и В). Наше математическое описание относится только к полям как функциям х, у, z и t, взятым в некоторой инерциальной системе отсчета.

Позднее мы будем говорить о «волне электрического и магнитного полей, распространяющейся в пространстве», например о световой волне. Но это все равно, что говорить о волне, бегущей по веревке. Мы при этом не имеем в виду, что какая-нибудь часть веревки движется в направлении волны, а подразумеваем, что смещение веревки появляется сначала в одном месте, а затем в другом. Аналогично для электромагнитной волны — сама волна распространяется, а величина полей изменяется.

Так что в будущем, когда мы — или кто-нибудь еще — будем говорить о «движущемся» поле, вы должны понимать, что речь идет просто о коротком и удобном способе описания изменяющегося поля в определенных условиях.